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ABSTRACT 

In the last decade, many porcine epidemic diarrhoea (PED) outbreaks have been reported by several countries in 

Asia whereas only a few Member States of the European Union (EU) have reported PED clinical cases and/or 

PED virus (PEDV)-seropositive animals. This alphacoronavirus was first reported in the USA in May 2013, 

followed by rapid spread throughout the country and outbreaks reported by several countries in the Americas. 

The recent PEDV-EU isolates have high level of sequence identity to PEDV-Am isolates. Based on nucleotide 

sequencing, multiple variants of PEDV are circulating in Europe, the Americas and Asia but any difference in 

virulence and antigenicity is currently unknown. Serological cross-reactivity has been reported between PEDV 

isolated in Europe and in the Americas; however no data regarding cross-protection are available. The impact of 

different PEDV strains is difficult to compare between one country and another, since impact is dependent not 

only on pathogenicity but also on factors such as biosecurity, farm management, sanitary status or herd immune 

status. However, the clinical signs of PEDV infections in naive pigs are similar in different countries with 

mortalities up to 100% in naive newborn piglets. The impact of recently reported PED outbreaks in Asia and the 

USA seems to be more severe than what has been described in Europe. Infected animals, faeces, feed and objects 

contaminated with faeces are matrices that have been reported to transmit PEDV between farms. Infectious 

PEDV has been detected in spray-dried porcine plasma (SDPP) in one study but the origin of the infectious 

PEDV in SDPP is not clear. Detection of porcine deltacoronavirus (PDCoV) has been reported in a few countries 

but only limited testing has been done. Based on the currently available information, it seems that PDCoV would 

have a lower impact than PEDV.  
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SUMMARY 

Following a request from the European Commission, the EFSA Panel on Animal Health and Welfare 

(AHAW Panel) was asked to deliver a scientific opinion on porcine epidemic diarrhoea virus (PEDV) 

and porcine deltacoronavirus (PDCoV). 

The approach used for this scientific opinion consisted of extensive literature searches (finalised by the 

end of September 2014), followed by extraction of the relevant information and a description of the 

current knowledge in accordance with the terms of reference. Data gaps and a lack of scientific 

evidence are identified and specified. Regarding the risk assessment of potential entry routes of PEDV 

and PDCoV into the European Union (EU), it was agreed with the European Commission that this 

scientific opinion would describe the currently available scientific evidence and identify data gaps, but 

a full risk assessment would not be performed. The following paragraphs summarize the knowledge 

first concerning PEDV and then concerning PDCoV, in relation to the terms of reference of the 

mandate. 

PED 

In the last decade, many porcine epidemic diarrhoea (PED) outbreaks have been reported by several 

countries in Asia. Only a few Member States of the EU have been reported PED clinical cases and/or 

PEDV-seropositive animals, the overall impact being very limited. This alphacoronavirus was first 

reported in the USA in May 2013, followed by a rapid spread throughout the country and outbreaks in 

several countries in the Americas. Vaccination has been used for many years in several Asian 

countries and might have influenced the epidemiological situation. New vaccines have been granted 

conditional licences in 2014 in the USA and no vaccines have been used in Europe. 

Using a collection of 33 full-length PEDV genome sequences, it has been shown that all PEDV 

sequences (including the prototypic European isolate CV777) are closely related (the identity between 

the US and non-US strains varies between 96.3 and 99.5%) and that it was possible to group these into 

different clusters and sub-groups. Sequences from viruses circulating in Asia were present within each 

of the clusters and subgroups, indicating that a range of different viruses are circulating in Asia. All 

the US PEDV sequences were clustered into one group, but a sub-division of an original strain and a 

new variant strain can be made. Analysis of the European PEDV sequences is very limited, since there 

are only a few sequences available from viruses circulating in the 1970-80’s, and the only others are 

from viruses circulating recently in Germany and Italy. There is high sequence identity between these 

very recently circulating German and Italian viruses and the US PEDV strains, but more studies are 

required in order to compare the virulence of these different viruses. Additional sequence data are 

required to understand PEDV evolution in Europe and the possible link with PEDV strains circulating 

in other parts of the world. 

Although differences in the virulence of PEDVs have been suggested in the scientific literature, there 

are not enough data available at the moment to compare their phenotypic characteristics. Comparing 

the virulence/pathogenicity of different PEDV isolates would require comparative animal experiments. 

No experimental animal studies have been reported describing the cross-protection between different 

PEDV strains. Serological cross-reaction between the virus isolated in Europe (PEDV-EU) and that 

isolated in the Americas (PEDV-Am) has been described including neutralizing antibodies raised 

against the early PEDV-EU towards PEDV-Am. 

The impact of recently reported PED outbreaks in Asia (after 2010) and the USA seems to be more 

severe than that described in Europe. However, it is difficult to compare the impact between one 

country and another, since impact is dependent not only on the pathogenicity of the virus but also on 

parameters such as the production system, biosecurity, the time of detection of an outbreak, farm 

management, herd size, the immune status of the population and herd sanitary status (e.g. presence of 

other infectious agents). The severity of disease associated with PEDV within a herd is variable and is 

highly dependent on the age of the infected pigs and on the level of immunity in the population. Based 
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on the scientific evidence available at the moment, the clinical disease of a PEDV infection in naive 

animals seems to be the same in different countries, with mortalities up to 100% in PEDV-naive 

newborn piglets. An apparent low impact of recent PED outbreaks caused by viruses with high 

sequence identity to US PEDV, has been reported in Italy and Germany. Factors which might 

influence the impact of a possible introduction of a US PEDV and spread of the virus into Member 

States include the level of cross-protection between different PEDVs and the seroprevalence 

(population immunity), both of which are currently unknown but are expected to vary between 

Member States. More knowledge on these factors is required before an accurate impact assessment 

can be performed. 

Infected live animals and faeces have been reported to transmit PEDV. Infectious virus can survive in 

slurry, but at present there are no data available on the role of this matrix in PEDV transmission. High 

levels of infectious PEDV are shed in faeces and can contribute to contamination of various objects 

(e.g. vehicles, humans) and feed. Transmission of PEDV via feed has been shown, but more data are 

required to assess the source of PEDV contamination in feed. PEDV RNA has been detected at low 

levels in the serum fraction of whole blood but there are no data reporting infectious virus in this 

matrix to date. It is reported that spray-drying of porcine plasma (SDPP) can inactivate PEDV. 

However, the influence of variations in spray-drying processes has not been validated sufficiently for 

PEDV. Infectious PEDV has been detected in SDPP in one study but the origin of the infectious 

PEDV in SDPP is not clear (faecal cross contamination or inadequate spray-drying). Faecal cross-

contamination of blood during collection at slaughterhouses cannot be excluded. Infectious virus has 

been detected in air collected under experimental conditions and so PEDV might be transmitted via 

the air for short distances. Low levels of PEDV RNA have been detected in semen but there are no 

data available on the presence of infectious virus in this matrix. Currently, there are no available data 

on the presence of PEDV in embryos, pork meat or other porcine derived feed components such as red 

blood cells, hydrolysed proteins, fat, gelatine and collagen. It can be assumed that porcine swill, 

particularly untreated pig intestines, can contain infectious PEDV, but there are no data available at 

the moment on the role of this matrix in PEDV transmission.  

PDCoV 

Detection of PDCoV has been reported in Hong Kong, the USA, Canada and China but only limited 

testing has been done. Serological tests specific to PDCoV and aimed at determining the immune 

status of the pig population have recently been developed and are currently in the process of 

validation.  

Based on the currently available field observations from the USA, the current view is that PDCoV 

infections would have a lower impact than PEDV. However, the interpretation of field data is difficult 

since co-infections with PEDV or other intestinal pathogens are common. It is expected that further 

analysis of very recently performed experiments will provide a better understanding of the 

pathogenesis and clinical symptoms associated with PDCoV infection. 

The available reports from the USA and Canada do not suggest a significant impact on animal health 

within these countries and no zoonotic potential of the virus has been reported. Therefore, the current 

knowledge of PDCoV leaves open questions on whether it can be classified as an emerging disease.  

PDCoV RNA has been detected in porcine intestinal samples, faeces and feed, but no information on 

the presence of PDCoV in slurry, semen, embryos, porcine whole blood, SDPP, other porcine-derived 

feed components or air is currently available. It could be anticipated that the presence and survival of 

PDCoV in different matrices is comparable to that of other intestinal porcine coronaviruses such as 

PEDV and transmissible gastroenteritis virus. 
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BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION 

Porcine epidemic diarrhea (PED) is a diarrheal disease of swine that was historically associated with a 

coronavirus of the Alphacoronavirus genus.  

The PED virus (PEDV) appeared in Europe in the early 1970s, when the disease was detected for the 

first time in the United Kingdom in a pig holding affected by acute diarrhea in fattening pigs and 

sows. Afterwards, the disease has been detected in several countries in Europe causing outbreaks of 

watery diarrhea in swine of all age groups with high mortality in neonatal pigs. At the time of its 

emergence in Europe PED was confused with transmissible gastroenteritis (TGE), a diarrheal disease 

of pigs caused by a coronavirus of the same group as the one of PED. However, the two coronaviruses 

did not show a direct antigenic relationship and thus the two viruses were considered two different 

etiological agents. Then, in the 1980's and 1990's the evolution of the two viruses was rather different. 

In fact, as regards as TGEV, a mutant of the virus with tropism for the respiratory tract appeared in the 

pig population and become widespread in the world inducing a cross protecting immunity to TGEV 

that led to a gradual disappearance of TGEV, and the associated enteric disease. Instead, PED 

remained enzootic in the European pig population and the severity of the clinical disease was related 

to the immune-status of the affected herd. In cases where the disease agent was introduced into a non-

immune, fully susceptible population, clinical symptoms were severe, and mortality in neonatal piglets 

could reach up to 80%. 

In the 1980's and 1990's outbreaks of PED became less frequent in Europe, while the virus persisted in 

the pig population and occasionally limited outbreaks were reported in some countries. Serological 

surveys conducted in some Member States showed that the prevalence of the virus had become low 

but it appeared to persist in some localized pockets of infection.  

The last documented evidence of the presence of the disease in Europe has been reported in Italy, 

where in the period 2005 – 2006 sixty-three outbreaks of PED occurred in the Po Valley. The disease 

affected pigs of all age groups, closely resembling the acute form observed in the seventies, when the 

disease emerged for the first time in Europe. Before that only sporadic outbreaks were observed in that 

area, affecting only grower and finisher pigs. 

Although PED was first identified in Europe, in the nineties the disease has become increasingly 

problematic in many Asian countries, including Korea, China, Japan, the Philippines, and Thailand. 

Afterwards, in May 2013 PED was identified for the first time in the United States and since then it 

has spread rapidly in the US, apparently causing severe economic losses, at present 27 states have 

been affected. Recent studies have shown that all PEDV strains detected in the United States are 

clustered within the same sub-genogroup and they are closely related to a strain previously detected in 

China. In 2014 PED has also been reported in Canada, Peru', Japan and Mexico.  

The PEDV currently circulating in the United States seems to be highly pathogenic, at least for certain 

categories of animals, and it appears that it causes significant production losses in the pig sector. An 

effective treatment does not exist, other than the control of secondary infections. Prevention is mainly 

based on the application of strict management and bio-security practices. Authorized vaccines exist 

only in Japan, South Korea and China but not in Europe and in the United States.  

PED is not a notifiable disease in the EU and it is not amongst the OIE listed diseases. Moreover, 

contrary to the situation in the United States, currently there is no evidence that the disease is causing 

significant health or production problems in the European pig farming system. As a matter of fact last 

documented evidence of the presence of the disease was reported in Italy in 2006. 

In addition, in February 2014 a new porcine Deltacoronavirus (PDCoV), similar to a coronavirus 

detected in Hong Kong in 2012, has been detected for the first time in the United States, where the 

virus has been identified in a breeding pig holding in Iowa with a history of acute severe diarrhea. 
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Furthermore, in March 2014, the PDCoV has been identified also in samples from six Ontario pig 

farms, in Canada.  

The clinical signs associated with the occurrence of PDCoV are similar or identical to those caused by 

PEDV in the Americas. In some cases it appears that both the PEDV and the PDCoV were detected in 

the same farm where an epidemic of diarrhoea in pigs was ongoing.  However, the role of this 

emerging virus in the ongoing epidemic of diarrhea in pigs in North America is still unclear. 

Currently there is no evidence of the presence of the new emerging Deltacoronavirus in the European 

pig farming system.  

Therefore, in order to better determine the extent of the problem and be prepared to face the possible 

re-emergence of the disease, the Commission needs specific advice to assess the risks posed by the 

PED strains currently circulating in Third Countries to evaluate their possible impact on the health 

status of pig holdings in Europe and on their production. The possible pathways of virus introduction 

into the EU should be evaluated as well. Furthermore, the appearance of the new porcine 

Deltacoronavirus needs attention as this emerging disease could make the picture even more 

complicated. 

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION 

In view of the above, and in accordance with Article 29 of Regulation (EC) No 178/2002, the 

Commission asks EFSA for a scientific opinion on: 

1. The current epidemiological situation in North America and Asia and elsewhere in the world 

as regard PED and the new porcine Deltacoronavirus. 

2. Characterization of the new porcine Deltacoronavirus as an emerging disease, especially as 

regards the severity of the disease induced.  

3. Possible differences between the European classical PED Alphacoronavirus strains and the 

ones currently circulating in the rest of the world, in particular in the Americas, and possible 

existence of cross protecting immunity. 

4. Impact of the different PED Alphacoronavirus strains and of the new porcine 

Deltacoronavirus in pigs in different immunological scenarios.  

5. Risk assessment of potential entry routes of PED and the new porcine Deltacoronavirus in the 

EU ranking them on the basis of the level of risk with a view to enhance risk mitigation, 

prevention and preparedness. 
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ASSESSMENT 

1. Introduction 

This scientific opinion describes specific aspects of the porcine epidemic diarrhoea virus (PEDV) and 

porcine deltacoronavirus (PDCoV), which belong to the genera alphacoronavirus and 

deltacoronavirus, respectively.  

PED was observed in Europe in 1971 and reported for the first time one year later (Oldham, 1972), 

and PEDV was described as the causative agent of PED by Pensaert and Debouck (1978). During the 

1970s and 1980s, the virus spread throughout Europe, causing outbreaks of watery diarrhoea in swine 

of all ages. However, during the 1980s and 1990s, the number of PED outbreaks decreased markedly 

in the region. Some European countries (i.e. Scandinavian countries) have never reported outbreaks or 

the detection of PEDV. Only few severe outbreaks have been reported since the 1980s in Europe and 

so the impact on the swine production has been limited. In contrast, PEDV has been circulating in 

Asia for several decades. It was demonstrated for the first time during the 1980s in China (Xuan et al., 

1984) and Japan (Takahashi et al., 1983). It was also confirmed in South Korea in 1992-1993 (Kweon 

et al., 1993) and in Thailand in 1995 (Srinuntapunt et al., 1995). According to the literature, PEDV 

was wide spread throughout the Asian continent and became an endemic infection during the 1990s. 

Feeding natural PEDV-infected material (e.g. piglet faeces and minced piglet intestine) to gestating 

sows has been used in Europe
4
 and Asia (and later also in the Americas) to prime the immune 

response and promote lactogenic immunity in exposed dams to protect suckling piglets (Ayudhya et 

al., 2012).  

This scientific opinion will further describe the epidemiological situation of PEDV infection based on 

information reported in the last 10 years (2004-2014), including the spread of PEDV to the Americas
5
. 

The virus may be present in more countries than those mentioned in this scientific opinion, as 

underreporting might exist.  

In contrast, PDCoV was only recently described (Woo et al., 2012). Detection of PDCoV has currently 

only been reported in Hong Kong, the USA and Canada (see section 2.3). 

The approach used for this scientific opinion consisted of extensive literature searches (finalised by the 

end September 2014), followed by extraction of the relevant information and a description of the 

current knowledge, in accordance with the terms of reference (TOR). Data gaps and a lack of scientific 

evidence are identified and specified. PEDV isolated in Europe, Asia or the Americas will be referred 

to as PEDV-EU, PEDV-As and PEDV-Am, respectively, independent of the year of isolation. 

Regarding the risk assessment of potential entry routes of PEDV and PDCoV into the EU, it was 

agreed with the European Commission that this scientific opinion would describe the currently 

available scientific evidence and identify data gaps, but that a full risk assessment would not be 

performed. 

2. Epidemiological situation regarding PEDV and PDCoV 

2.1. Collection of information 

In order to describe the current epidemiological situation for PEDV and PDCoV (TOR1), information 

has been collected on cases and seroprevalence reported during the last 10 years in Europe, Asia and 

the Americas via an extensive literature review (see Appendix A), as well as through institutional 

contacts and a search of grey literature on the internet. Detailed information is provided in 

Appendix B. 

                                                      
4 Feeding manure or the intestines of diseased pigs to animals in the EU, is not allowed under Animal By-Product Legislation 

(Regulation (EC) No 767/2009 Annex III: List of materials whose placing on the market or use for animal nutritional 

purposes is restricted or prohibited as referred in Article 6. 
5 There is one report of a coronavirus-like agent in Quebec (Turgeon et al., 1980), but there is no proof that this was PEDV. 
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2.2. Occurrence of PEDV 

2.2.1. Europe  

In the Czech Republic, Rodak et al. (2004) reported that 27 out of 219 faecal samples from diarrhoeic 

piglets (< 21 days old) were positive for PEDV. One year later, using a competitive blocking enzyme-

linked immunosorbent assay (ELISA), PEDV antigens were detected in 15 faecal samples (out of 80 

tested) from 6 farms (out of 38 farms with clinical diarrhoea) (Rodak et al., 2005). However, to our 

knowledge, there is no other information regarding PEDV occurrence (outbreaks) within the country 

after this particular report. 

The only well-documented epidemic of PEDV in Europe during the last 10 years was reported in the 

Po Valley, northern Italy (Martelli et al., 2008). It occurred between May 2005 and June 2006 in an 

area densely populated with pigs. The outbreak started with four cases occurring in fattening farms in 

May (n=2), June (n=1) and July (n=1). No clinical cases were detected during August and September. 

In October, two new cases appeared: the first in a fattening unit and the second in the nursery of a 

three-site production unit. The disease spread during the winter of 2005-2006, affecting more than 60 

farms including fattening units as well as farrow-to-finish or farrow-to-weaner farms. Some PEDV-

positive farms (35 out of 476) were detected between mid-2006 and the end of 2007, but the disease 

progressively disappeared (Sozzi et al., 2010). From 2008 to 2014, only sporadic outbreaks were 

observed in grower and finisher herds: 71 cases in 58 different farms, out of 1 563 cases of enteritis 

(4.54%) (see Table 2 and Table 3 in Appendix B). Over the period 2007-2014, mild clinical signs 

involved pigs of all ages and mortality was observed in piglets only in the PEDV positive farms in 

Italy (Sozzi et al., 2014). 

In Hungary, 12 piglets from one farm were PEDV-positive in 2009 (see Table 2 in Appendix B). No 

report was found describing these cases. 

In Estonia, during 2010, an outbreak of PED was suspected and reported but was not confirmed. Some 

additional cases were suspected in 2011 and 2012 (see Table 2 in Appendix B). No report was found 

describing these cases. 

In mid-2014, two independent PEDV outbreaks were reported in fattening farms in Germany: one in 

North-Rhine Westphalia and one in Baden-Württemberg (Henninger and Schwarz, 2014; personal 

communication, Sandra Blome, Friedrich Loeffler Institute, Riems, Germany, October 2014).  

To our knowledge no PEDV outbreaks have been reported in the literature from any other European 

country during the last 10 years apart from the examples cited above (see Table 3 in Appendix B). 

However, most of the countries have not implemented active monitoring for this particular disease. In 

addition, antibody seroprevalence data are scarce and the sensitivity and specificity of the diagnostic 

tests remain unknown. Data from limited testing were provided to EFSA by Member State 

representatives (see Table 4 in Appendix B). All tested serum samples were PEDV antibody negative 

in Denmark (n=±2500 per year, 2000-2006) and in Belgium (n=460, 2014), whereas an estimate of 

PEDV-seroprevalence in slaughter pigs in Great Britain was 9.0% (95% confidence interval 6.3-11.7) 

based on samples taken in slaughter houses in the framework of a Salmonella study (n=558, 2013) 

(see Table 11 in Appendix E). A serosurvey in three Italian provinces revealed PEDV-specific 

antibodies in 11 out of 21 farms with 7 to 52% of the tested animals being positive (Alborali et al., 

2014). However, the available data provide a low level of scientific evidence on the prevalence of 

PEDV in Europe, considering that the sampling method is not optimal, the testing is limited and the 

sensitivity and specificity of the diagnostic tests used is not well known. As only limited active 

monitoring is performed, underreporting of the disease cannot be ruled out. Underreporting is more 

likely for those cases with a low clinical impact, since more severe cases with significant impacts on 

production and pig health would presumably be more thoroughly investigated. At present, among the 
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EU Member States, PEDV is notifiable only in France, albeit on a temporary basis (Arreté Ministeriel 

of 12 May 2014
6
).  

2.2.2. Asia  

PEDV outbreaks have been reported from several countries of Asia during the last 10 years such as 

Thailand (Puranaveja et al., 2009; Olanratmanee et al., 2010; Ayudhya et al., 2012; Temeeyasen et al., 

2014), Taiwan (Puranaveja et al., 2009; Lin et al., 2014), the Philippines (Morales et al., 2007), South 

Korea (Lee et al., 2010) and southern provinces of Vietnam (Duy et al., 2011). In October 2010, a 

large-scale outbreak of PEDV was reported in several provinces in southern China. PEDV also spread 

to other regions of the country, particularly in the northwest (Wang et al., 2013a). It is now circulating 

in at least 29 Chinese provinces (Feng, 2014). In October 2013, Japan confirmed a PEDV outbreak to 

the World Organisation for Animal Health (OIE) (OIE, 2014e) after an absence of seven years in the 

country. At present, 38 out of 47 prefectures are affected (Kawashima, 2014). Among 5 570 farms, 

817 have been affected and at the peak of the epidemic, more than 100 newly affected farms per week 

were reported (Kawashima, 2014). According to the information provided by Japan’s National 

Institute of Animal Health, PEDV isolates from this outbreak are genetically related to the PEDV 

isolates recovered from China and the USA in 2013. In addition, in late 2013, PEDV outbreaks were 

reported in South Korea and Taiwan (Choi et al., 2014; Lee and Lee, 2014; Lin et al., 2014). In August 

2014, Taiwan reported 34 PEDV-positive farms in central and southern regions of the country (OIE, 

2014b). More details on the different outbreaks are provided in Table 2 in Appendix B.  

Attenuated or killed vaccines against PEDV, some of them combined with transmissible 

gastroenteritis virus (TGEV) (bivalent vaccines), have been used in China since 1995 (Chen et al., 

2010). An attenuated virus vaccine using cell-culture-adapted PEDV has been administered on a 

voluntary basis to sows in Japan since 1997 (Song and Park, 2012). Oral vaccination with cell-culture 

attenuated vaccines has been used in South Korea since 2004 and in the Philippines since 2011 (Song 

and Park, 2012). However, several publications question the efficiency and/or safety of PEDV 

vaccines used in Asia (Ayudhya et al., 2012; Luo et al., 2012; Pan et al., 2012; Sun et al., 2012; Tian 

et al., 2013). It has been reported that PEDVs that have caused disease in China are very closely 

related to attenuated vaccine strains, which might be vaccine strains reverted to virulence (see section 

3.2). 

PED is a reportable disease in some countries of the region (i.e. Japan and South Korea). However, no 

active monitoring is conducted in any affected country in the region. Only one published report from 

Asia since 2004 included data on seroprevalence: 73.6% of the sows from 48 commercial farms 

sampled were seropositive in South Korea (Oh et al., 2005). 

2.2.3. The Americas  

PEDV was first identified within the USA in Iowa in May 2013, although testing of historical samples 

identified the earliest detection of the virus to have occurred in Ohio in April 2013. There was no 

previous description of PEDV in the region before that time and therefore, this pig population could be 

considered PEDV naive and fully susceptible to an infection with PEDV. Stevenson et al. (2013) 

described the disease in the first affected farms. It is relevant to point out that these farms were not 

related: they had no geographical connection (farms were separated by at least a 100 miles) and there 

was no evidence of shared personnel or links between feed mills/feed suppliers or trucks/trucking 

companies. PEDV rapidly spread throughout the country and was confirmed on farms from 32 states 

by the end September 2014 (see Table 2 in Appendix B for more information). It is not clear at the 

moment why PEDV spread so fast in the USA compared with other countries where the virus has been 

introduced. According to data provided, epidemics peaked in February and March 2014 and the 

number of positive submissions has been decreasing since then (see Figure 3 in Appendix B). PEDV is 

now a reportable disease in the USA (since June, 2014)
7
. A PEDV subunit vaccine based on replicon 

                                                      
6 http://agriculture.gouv.fr/IMG/pdf/140512_categ_emergent_DEP_cle0f6c2e.pdf (accessed 1 August 2014) 
7 http://www.usda.gov/wps/portal/usda/usdamediafb?contentid=2014/06/0113.xml&printable=true (accessed 1 August 2014) 

http://agriculture.gouv.fr/IMG/pdf/140512_categ_emergent_DEP_cle0f6c2e.pdf
http://www.usda.gov/wps/portal/usda/usdamediafb?contentid=2014/06/0113.xml&printable=true
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particle technology
8
, using a single PEDV protein (the spike protein), as well as a PEDV vaccine with 

killed virus
9
, have recently been granted a conditional licence in the USA

10
. 

PEDV was detected in Mexico for the first time in July 2013 (Fajardo et al., 2014). The virus spread 

through the country and, in May 2014, outbreaks were reported from 17 out of 32 federal entities 

(OIE, 2014c). No updates were available as of September 2014. 

In October 2013
11

, PEDV was identified for the first time in Peru (three outbreaks). In 2014, until 

September, six outbreaks were identified in the Lima region and one was identified in the Ica region 

(Quevedo-Valle, 2014). Preliminary studies suggested that Peruvian isolates are strongly related to 

North American strains, although no data were provided (More-Bayona et al., 2014; Quevedo-Valle, 

2014).  

In November 2013, PEDV was also identified as the cause of outbreaks of diarrhoea in farms in the 

Espaillat province, Dominican Republic. The isolates were closely related to US strains. This 

information was reported in June 2014 (OIE, 2014d). By September 2014, PED outbreaks were 

reported in seven of the 31 provinces of the country (Gómez, 2014). 

In April 2014, Canada reported to OIE outbreaks of PEDV that started in January and affected 58 

herds in four provinces. Again, sequencing of the PEDV genomes demonstrated that they were similar 

to those circulating in the USA (OIE, 2014a; Pasick et al., 2014). PED is not a federally reportable 

disease in the country although it is reportable in some of the provinces (e.g. Alberta
12

, Manitoba
13

 and 

Quebec
13

). The latest case in this country was reported in July 2014, and passive monitoring through 

the Canadian Swine Health Board
14

 indicates that no new PED cases are being detected in the country. 

An acute outbreak of diarrhoea and death in lactating piglets was observed in Colombia in March 

2014. A total of 45 farms (including backyard farms) from five administrative departments were 

involved. PEDV isolates from Colombia were further characterized and found to be similar to PEDVs 

described in the USA (OIE, 2014e). This event was reported to OIE in June 2014. By September 2014, 

54 samples from six departments were confirmed via laboratory testing (Rativa, 2014). 

Finally, a PEDV outbreak occurred in a commercial pig farm in Ecuador in July 2014 and was 

reported to OIE in September 2014 (OIE, 2014f).  

2.3. Occurrence of PDCoV 

Viruses belonging to the genus deltacoronavirus were first reported in birds in 2009 (Woo et al., 

2009), whereas PDCoV was identified for the first time in Hong Kong, as published by Woo and 

colleagues (2012). 

However, the first association of PDCoV with a diarrhoeal disease was reported in February 2014 in a 

sow herd in Iowa. Viral enteritis was suspected based on clinical signs but neither PEDV nor TGEV 

was detected. Surprisingly, all faecal samples tested positive when a pan-coronaviridae reverse 

transcriptase polymerase chain reaction (RT-PCR) was performed. Further analysis using sequencing 

allowed the confirmation of PDCoV (Li et al., 2014). Since then, according to a US Department of 

Agriculture report of 19 June 2014, PDCoV has been detected on 277 farms distributed across 15 

states (see Table 5 in Appendix B for more information). Sequence analysis of PDCoVs circulating in 

                                                      
8  http://www.harrisvaccines.com/documents/filelibrary/images/2014/AASV_2014_PED_E5CB3D11FD6AE.pdf (accessed 

27 August 2014) 
9  http://www.porknetwork.com/pork-news/Zoetis-granted-conditional-license-for-PEDv-vaccine-273753991.html 
10  http://content.govdelivery.com/accounts/USDAAPHIS/bulletins/be33f9 (accessed 22 July 2014) 
11 http://www.senasa.gob.pe/RepositorioAPS/0/1/JER/ANRIEVIEP_ESTATUTUSZOO/BOLET%C3%8DN%20OCTUBRE

%202013.pdf (accessed 30 September 2014) 
12  http://www.producer.com/2014/01/alberta-lists-ped-as-reportable-disease-in-hogs/ (accessed 1 August 2014) 
13  http://www.agcanada.com/daily/manitoba-quebec-to-declare-ped-reportable (accessed 1 August 2014) 
14  http://www.swinehealth.ca/PED-Alert.php (accessed 1 August 2014) 

http://www.harrisvaccines.com/documents/filelibrary/images/2014/AASV_2014_PED_E5CB3D11FD6AE.pdf
http://www.porknetwork.com/pork-news/Zoetis-granted-conditional-license-for-PEDv-vaccine-273753991.html
http://content.govdelivery.com/accounts/USDAAPHIS/bulletins/be33f9
http://www.senasa.gob.pe/RepositorioAPS/0/1/JER/ANRIEVIEP_ESTATUTUSZOO/BOLET%C3%8DN%20OCTUBRE%202013.pdf
http://www.senasa.gob.pe/RepositorioAPS/0/1/JER/ANRIEVIEP_ESTATUTUSZOO/BOLET%C3%8DN%20OCTUBRE%202013.pdf
http://www.producer.com/2014/01/alberta-lists-ped-as-reportable-disease-in-hogs/
http://www.agcanada.com/daily/manitoba-quebec-to-declare-ped-reportable
http://www.swinehealth.ca/PED-Alert.php
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several states revealed high sequence identity (Marthaler et al., 2013 and 2014a,b; Wang et al., 2014a). 

In many farms, PEDV and PDCoV were simultaneously detected (Wang et al., 2014a, b) and further 

research is needed to establish its role in swine disease. PDCoV infection was reported in April 2014 

(OIE, 2014g). PDCoV is a reportable infection in the USA (June 2014)
15

.  

PDCoV has also been described in some Canadian farms with clinical signs of vomiting and diarrhea, 

that tested negative for TGEV and PEDV during 2014. This infection is not federally reportable in 

Canada at the moment, but it is reportable in several particular provinces (e.g. Alberta
16

).  

Recently, PDCoV has also been detected in 20 out of 143 samples collected in five Chinese provinces: 

Heilongjiang, Liaoning, Tianjin, Shandong and Jiangsu (Feng, 2014).  

Currently, there is no other description of PDCoV in any other country. However, given the recent 

identification of PDCoV, it is likely that diagnostic capabilities are limited in many countries and, 

hence, only very limited testing is carried out. 

3. Differences between European, Asian and American PEDV isolates 

3.1. Collection of information 

In order to describe possible differences between PEDV-EU, PEDV-As and PEDV-Am isolates and 

the possible existence of cross-protecting immunity (TOR3), information has been collected on 

sequences and phenotypic characteristics of PEDV isolates via an extensive literature review (see 

Appendix A), as well as through a search of grey literature on the internet. Detailed information is 

provided in Appendix C. 

3.2. Description 

Like other coronaviruses, PEDV has a positive-sense, single-stranded, RNA genome of about 28 000 

nucleotides. The genome includes seven known open reading frames (ORFs) encoding both non-

structural proteins (including the replicase polyproteins (from ORF1a and ORF1b)) and structural 

proteins (including the spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins). The S, 

E and M proteins are all present on the outside of virus particles and hence can be expected to be the 

target of host antibody responses. The S protein (encoded by ORF2) is a large glycoprotein (1383 

amino acids, ca.180-220 kDa) and is believed to play a major role in mediating virus attachment to 

cells (for more information, see review by Song and Park, 2012). Multiple epitopes within the S 

protein have been identified, which are recognized by neutralizing antibodies (see Table 6 of 

Appendix C). The S protein has been the focus for the development of vaccines against PEDV, and 

mutations within the S gene are associated with growth adaptation in vitro (Sato et al., 2011). 

Differences in the S protein sequence may explain the ability (or not) of particular vaccines to confer 

protection against different strains of PEDV. However, the M protein (20-30 kDa) also induces 

antibodies that neutralize the virus in the presence of complement (Song and Park, 2012). 

Prior to the development of next-generation sequencing, the large size of the coronavirus genome lead 

to many studies focusing on the sequence of specific genes, such as the S gene in particular, to 

differentiate strains. The full genome sequences of over 30 different PEDVs have now been 

determined, but the full-length S gene (ca. 4 100 nt) and even the S1 portion
17

 (ca. 2 200 nt) are still 

considered useful to study the genetic relatedness between strains (Lee et al., 2010; Wang et al., 

2013c; Chen et al, 2014a, b). The sequence of PEDV ORF 3 has also been used for phylogenetic 

comparisons; this ORF encodes a protein that is not essential for growth of the virus in cell culture (Li 

                                                      
15 http://www.aphis.usda.gov/newsroom/2014/06/pdf/secd_federal_order.pdf (accessed 1 August 2014) 
16 http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/cpv12455/$FILE/2014-05-20-sdcv-announcement-final.pdf  

(accessed 29 Aug 2014) 
17 The S protein can be divided into S1 (1-789 amino acids) and S2 (790-1 383 amino acids) domains based on its homology 

with S proteins from other coronaviruses, although there is no cleavage site in PEDV (Duarte and Laude, 1994). 

http://www.aphis.usda.gov/newsroom/2014/06/pdf/secd_federal_order.pdf
http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/cpv12455/$FILE/2014-05-20-sdcv-announcement-final.pdf
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et al., 2013a) and its role in the virus life cycle is not entirely clear, but the product has been reported 

to be an ion channel protein (Wang et al., 2012).   

Using a collection of 33 full-length PEDV genome sequences, including viruses from China, Korea, 

the USA and Europe, it was possible to group these into two clusters, termed group I and group II, 

with further sub-divisions possible (Figure 1). All the US PEDV sequences (99.7-99.9% nucleotide 

identity with each other) clustered in group IIa (Chen et al., 2014a, b) with some Chinese viruses from 

2011 and 2012. Recent PEDV-As viruses are present within each of the clusters and sub-groups, 

indicating that a range of different viruses are circulating in Asia (Figure 1; see Table 7 in Appendix C 

for more detailed information).  The sequences from PEDVs circulating in China after 2010 cluster 

together in groups separated from clusters of sequences of PEDVs circulating before 2010 (see 

Figure 1; Huang et al., 2013; Wang et al., 2013c). It should be noted that all the PEDV sequences 

(including the prototypic European isolate CV777) are closely related (the identity between the US 

and non-US strains varies between 96.3 and 99.5%). The complete genome sequences include some 

regions that are highly conserved, and thus nucleotide differences are more apparent within the S 

protein sequence when evaluated alone. However, the grouping of sequences based on the entire S 

gene (or the S1 or S2 regions) gave the same clustering of strains as observed for the whole genome 

(Figure 1). The clustering into groups I and II also applied to the M, N, E and ORF 3 sequences, when 

considered separately, but sub-divisions within these groups were less clear for trees based on the M 

and N gene sequences (Chen et al., 2014a, b).  

There are two recent reports of a new variant PEDV strain in the USA. This variant strain has 99%
18

 

nucleotide identity at the whole-genome level and 97%
18

 nucleotide identity in the full-length S gene, 

compared with the original PEDV isolates clustered in the original strain reported in the USA (Figure 

1). The variant strains, also referred to as the S INDEL strain by some laboratories in the USA, have 

some small deletions and insertions within the S1 coding region, resulting in only 89-93.8 % 

nucleotide identity within part of the S1 coding region compared with the original PEDV isolates 

reported in the USA (Chen et al., 2014a; Wang et al., 2014a).  The new variant strain was reported to 

appear less virulent than the original US strains based on field reports, with piglets from infected sows 

showing minimal clinical signs and no mortality (Wang et al., 2014a). However, it remains to be 

confirmed whether the variant induces less severe clinical disease in PEDV naive animals. This new 

variant is more closely related to a Chinese strain than to the other PEDV strains currently circulating 

in the US, and it has been shown, retrospectively, to have been present in the USA pig population 

since May 2013. This indicates that at least two strains of PEDV were introduced into the US at a 

similar time and are now co-circulating in the USA pig population (Huang et al., 2013; Chen et al., 

2014a).  

                                                      
18 The percentage refers to PEDV strain OH851 and might be slightly different for other variant PEDV strains 
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Figure 1: Phylogenetic analysis of the full-length PEDV genome and S1 region. (Adapted from Chen et al., 2014a, b)  
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Until data were reported recently by Germany and Italy, there was no information available on the 

sequences of the PEDVs that have circulated in recent years within Europe. The only PEDV-EU 

sequence information
19

 that has been reported relates to a virus sampled in the 1970s and 1980s. 

Blome and colleagues (personal communication, Sandra Blome, Friedrich Loeffler Institute, Riems, 

Germany, October 2014) revealed the sequence of a virus that circulated in Germany (Baden-

Württemberg), inducing watery diarrhea and killing approximately 20 infected pigs in a fattening herd 

of 1400 animals. Sequence analysis showed the closest identity was to the new variant PEDV-Am 

strain (99.5% identity of the full genome compared with PEDV-Am OH851). A phylogenetic tree 

based on the S gene is presented in Figure 2. Another German PEDV recently circulating in North-

Rhine Westphalia showed high sequence identity to PEDV circulating in the USA (99% of a 651-

nucleotide fragment of the S gene) (Henniger and Schwarz, 2014). A large fattening farm was 

affected. Despite the very high morbidity in feeders and finishers (almost 100%), none of the infected 

animals died. The sequences of several Italian PEDVs circulating in the period 2007-2014, which 

induced diarrhea and mortality in piglets, show that these recently circulating viruses cluster into three 

groups that are different from the cluster of the old PEDV-EU isolates (Alborali et al., 2014; Sozzi et 

al., 2014). One of the Italian clusters, including the only two sequences from 2014, has higher 

sequence identity to the PEDV-Am variant strain when analyzing the full S gene sequence. Taken 

together, it can be concluded that PEDVs with high sequence identity to the US PEDV strain are 

currently circulating in Europe, but more analyses and additional sequence data are required to 

understand PEDV evolution in Europe and a possible link with PEDV strains circulating in other parts 

of the world.  

 

                                                      
19 CV777 isolated in Belgium (whole genome sequence available), Br1/87 isolated in France (sequence of some genes 

available) 
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Figure 2: Phylogenetic tree based on the spike protein. A distinct cluster can be found comprising the 

recent German isolates and the new variant US strain OH851 (kindly provided by Sandra Blome, 

Friedrich Loeffler Institute, Riems, Germany, October 2014). 

Although PEDV isolates from the USA and recent isolates (2014) from Germany and Italy cluster 

together, there are not enough data to compare their phenotypic characteristics. Comparing the 

virulence/pathogenicity of different PEDV isolates would require comparative animal experiments. As 

already mentioned above, some studies describe PEDV isolates which might have altered 

pathogenicity (Li et al., 2012a; Yang et al., 2013b; Wang et al., 2014a), but side-by-side animal 

experiments including the different strains are required to assess potential differences in pathogenic 

effect. 

The high level of sequence identity between different strains of PEDV would suggest that there should 

be antigenic cross-reactivity between them, albeit changes in individual epitopes could occur (Hao et 

al., 2014). However, it has been noted that the recent cases of PEDV infection in China from 2011 

to2012 have occurred in animals that had been vaccinated with a CV777-based vaccine (Li et al., 

2012a; Sun et al., 2012; Tian et al., 2013a). For instance, analysis of the S gene from PEDVs 

circulating in the Gansu province, China, found that the level of nucleotide and amino acid identity 

was about 94% compared with the CV-777-derived vaccine strain (Tian et al., 2013a).  Some of the 

sequence changes were reported to modify the S protein by changing glycosylation sites, influencing 

its hydrophobicity or substituting amino acids in B-cell epitopes (Sun et al., 2012; Tian et al., 2013a,b; 

Hao et al., 2014), which might influence the neutralizing effect of the antibodies.  

Li and colleagues (2012a) indicated that, in the early stages of the recent outbreaks of PEDV in China, 

the morbidity and mortality rates were lower within vaccinated herds than within non-vaccinated 

herds; however the CV777-based inactivated vaccine did not completely prevent disease. This was 

interpreted as indicating that the inactivated CV777-derived vaccine was providing only partial 

protection. Other vaccines against PEDV have also been employed in China, including a dual 

combination live-attenuated vaccine against TGEV and PEDV. Overall, there appears to be little 

information on the use and efficacy of the PEDV vaccines in China. In addition, it appears that some 

farms have experienced disease resulting from a PEDV isolate that was very closely related to the 

attenuated DR13 vaccine strain (see group I in Figure 1; Wang et al., 2013c) that is routinely used in 

South Korea, and so this might be to the result of reversion of the DR13 vaccine strain to virulence.  

No experimental animal studies have been reported describing the cross protection between different 

PEDV strains. Serologic cross-reaction between PEDV-EU and PEDV-Am has been described 

including neutralizing antibodies raised against PEDV-EU towards PEDV-Am (Melinda Jenkins-

Moore, Diagnostic Virology Laboratory, Ames, Iowa, personal communication, August 2014). 

4. Impact of PEDV and PDCoV infection 

4.1. Collection of information 

In order to describe the possible impact of different strains/isolates of PEDV and PDCoV in the EU 

(TOR4), information has been collected on clinical course and pathological lesions caused by PEDV 

and PDCoV via an extensive literature review (see Appendix A), as well as through a search of grey 

literature on the internet. Experts also identified relevant publications from the period before 2004. 

Detailed information is provided in Appendix D. 

4.2. Description of PEDV infection 

4.2.1. Clinical course 

The impact of PED reported in Asia (after 2010) and the US seems to be more severe than that 

described in Europe (Sun et al., 2012; Mole, 2013; Williamson et al., 2013; Kawashima, 2014). 

However, it is difficult to compare the impact between one country and another, since impact is 
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dependent not only on the pathogenicity of the virus but also on parameters such as the production 

system, biosecurity, the time of detection of an outbreak, farm management, herd size, the immune 

status of the population and herd sanitary status (e.g. presence of other infectious agents) (Chae et al., 

2000; Jung et al., 2006a,b; Song et al., 2007; Ayudhya et al., 2012; Stevenson et al., 2013; Wang et al., 

2013a; Williamson et al., 2013; Dufresne and Robbins, 2014; McOrist, 2014). For instance, the 

impacts of PED in the USA and Canada are significantly different despite the temporal overlap of 

outbreaks in the two countries. This section, however, provides a general description on the clinical 

course of a PEDV infection in naive animals since there is a lack of evidence for any difference in 

clinical disease in naive animals between countries.  

Newborn piglets can be protected against infection by maternal antibodies (Bandrick et al., 2014). The 

aim of control measures such as vaccination and feeding sows with naturally infected materials is to 

achieve protective levels of maternal PEDV-specific antibodies in colostrum (Kweon et al., 1999; 

Song et al., 2007; Song and Park, 2012; Dufresne and Robbins, 2014; Gerber et al., 2014a). The 

severity of disease associated with PEDV within a herd is variable and is highly dependent on the age 

of the infected pigs and on the level of immunity in the population (see section 4.2.1.4). The next three 

sub-sections describe the clinical course of PEDV in suckling piglets, weaned piglets, and fatteners 

and adults considering a PEDV-naive herd. The last subsection on clinical course describes the 

evolution from an acute outbreak to endemic infection in a herd.  

4.2.1.1. Suckling piglets  

The term ‘suckling piglets’ refers to newborn animals until the time of weaning. At the peak of the 

epidemic, a PEDV-naive population of sucking piglets usually experiences very high morbidity (up to 

100%), characterized by watery, non-mucous-haemorrhagic, fetid diarrhoea containing flocculent 

undigested milk as well as vomiting (not in all affected animals) (e.g. Duy et al., 2011; Sun et al., 

2012; Stevenson et al., 2013; Wang et al., 2013a; Yang et al., 2013b; Dufresne and Robbins, 2014; Lin 

et al., 2014). Diarrhoea induces severe dehydration and emaciation causing mortality. Particularly in 

the first 2-3 days after birth, mortality associated with PED can reach up to 80-100% (Martelli et al., 

2008; Stevenson et al., 2013). One-day-old caesarian-derived/colostrums-deprived piglets inoculated 

with a PEDV-Am strain demonstrated lethargy and severe, watery diarrhea within 12-24 hours post 

inoculation (hpi) with intermittent vomiting in some piglets from 24 to 48 hpi. Loss of body condition 

and marked dehydration were apparent by 48 – 72 hpi when piglets were euthanized (Phil Gauger, 

Iowa State University, Ames, Iowa, USA, personal communication, September 2014).  Very similar 

observations were made in colostrum-deprived one-day-old piglets inoculated with a Korean PEDV 

isolate (Kim and Chae, 2000). More details are provided for each study in Table 8 of Appendix D. 

4.2.1.2. Weaned pigs 

The term ‘weaned pigs’ refers to animals from the time of weaning until they are 60-80 days of age. 

Morbidity rates of up to 90% in pigs 28-75 days-old have been reported (Martelli et al., 2008). 

Watery, non-mucous-haemorrhagic diarrhoea and vomiting in some pigs are reported, accompanied by 

anorexia and lethargy. The majority of the affected pigs recover around one week after infection 

(Hesse et al., 2014), so that mortality in weaned pigs is only 1-3% (Pospischil et al., 2002; Martelli et 

al., 2008; Stevenson et al., 2013). Three-week-old weaned pigs challenged with a PEDV-Am strain 

demonstrated clinical diarrhea by 48 hpi, with vomiting observed at two and three days post-

inoculation (dpi) in some pigs. Morbidity, including lethargy, anorexia and watery diarrhea, peaked at 

6 dpi but subsided by 10 dpi. In addition, challenged pigs demonstrated a significant reduction in 

average daily gain during the first week post-inoculation compared with non-challenged control pigs 

(Madson et al., 2014). More details are provided for each study in Table 8 of Appendix D. 

4.2.1.3. Fatteners and adults  

The age group ‘fatteners and adults’ refers to pigs from 60-80 days of age to slaughter age and 

includes both sows and boars. Morbidity can be variable but, in a susceptible population, fatteners and 

adults can experience a morbidity rate of up to 90%, showing the typical clinical signs of PED (watery 
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diarrhoea and, to a lesser extent, vomiting) for a few days after infection (Martelli et al., 2008; 

Stevenson et al., 2013). The effect of PEDV on the epithelial cells of the villi is the same in young 

piglets and in adults but the severity of the disease depends on the capacity of the cells at the base of 

the villus to differentiate into mature cells and migrate to the top of the villus, restoring the villus 

anatomy and function. As reported for transmissible gastroenteritis, regeneration of the villi takes 

more time in young animals (6-7 days or more) than in adults (3-4 days) (Kelly et al., 1972). Systemic 

clinical signs such as fever, anorexia and lethargy may be present in adult pigs. Adults showing mild 

watery diarrhoea can be off-feed for some days, but recover promptly (Martelli et al., 2008; Li et al., 

2012a; Sun et al., 2012; Lin et al., 2014). In fatteners and adults, mortality remains between 0 and 4% 

(Martelli et al., 2008; Lin et al., 2014; personal communication, Sandra Blome, Friedrich Loeffler 

Institute, Riems, Germany, October 2014). More details are provided for each study in Table 8 of 

Appendix D. 

A reduction in the reproductive performance of PEDV-infected animals has been reported in the 

scientific literature (Olanratmanee et al., 2010), but this may be induced by other pathogens that may 

be transmitted to sows via feeding of naturally PEDV-infected material as a measure to control PED. 

4.2.1.4.  Evolution from epidemic outbreak to endemic infection in a herd 

When PEDV-infected pigs are introduced into a PEDV-naive herd, clinical signs typically appear 

within four to six days (Martelli et al., 2008; Geiger and Connor, 2013). In most outbreaks, clinical 

signs appear first in piglets, followed by disease in farrowing, breeding and gestation rooms. In some 

cases, diarrhoea can be observed first in gestating sows and subsequently in the farrowing units 

(Martelli et al., 2008; Dufresne and Robbins, 2014). The whole herd can rapidly become infected. On 

a herd basis, the average initial pre-weaning mortality is expected to range from 30 to 80% decreasing 

following the development of protective immunity among farrowing sows (Pospischil et al., 

2002;Martelli et al., 2008; Gao et al., 2013; Stevenson et al., 2013). The induction of a protective 

immune response, mainly related to the stimulation of secretory immunoglobulin A, coincides with 

reduced PEDV shedding about one week following infection of an animal, but data are lacking to 

determine the exact duration of a protective PEDV-specific immune response (Saif et al., 1994; Van 

Cott et al., 1994; Carvajal et al., 1995; De Arriba et al., 2002). The immunity is certainly not long 

lasting, but a rapid anamnestic response after exposure generally prevents the reappearance of the 

disease in previously immunized or exposed animals (Saif et al., 2012). 

Depending on the size of the herd and the type of operation, the time-to-baseline production
20

 was 

approximately six weeks (ranging from 4 to 8 weeks) (Martelli et al., 2008; Goede and Morrison, 

2014).  PEDV infections will gradually disappear when a sufficient level of herd immunity is 

achieved. Endemic infection can occur in herds with a continuous flow production system and clinical 

signs can appear in recently weaned pigs when protective lactogenic immunity declines. Infected pigs 

suffering from moderate disease (diarrhoea) with low or no mortality typically clear the infection and 

develop a natural active immunity within two weeks (Martelli et al., 2008). On the other hand, 

introduction of new susceptible animals may lead to reoccurrence of PED in a herd (Pijpers et al., 

1993; Martelli et al., 2008). PED may also be involved in a multi-etiological diarrhoea syndrome in 

feeder pigs, appearing two to three weeks after entering the fattening units, particularly when pigs 

originate from different sources and when new pigs are continuously added to the fattening units (Van 

Reeth and Pensaert, 1994). 

4.2.2. Pathological lesions 

Necropsied piglets demonstrated congestion of the small intestine with segmental enteritis, which 

probably contributed to malabsorption. Severe atrophic enteritis characterized by blunting of the 

intestinal villi and sloughing of the intestinal epithelium is also prominent in affected piglets. 

Histopathological lesions characteristically include small intestinal villous blunting (Debouck et al., 

                                                      
20 Defined using statistical process control methods to represent the time to recover of the number of pigs weaned per week 

that herds had prior to PEDV-detection. 
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1981; Li et al., 2012a; Huang et al., 2013; Stevenson et al., 2013; Jung et al., 2014; Lin et al., 2014). 

Although some strains also replicate in cecum and colon epithelial cells, cellular necrosis and villous 

atrophy were not evident. Ultrastructural colon lesions have rarely been observed (Saif et al., 2012).  

Whether PEDV infection of the large intestine contributes to the severity of PED is unclear (Jung et 

al., 2014). These pathological findings were similar to those described in conventional pigs naturally 

infected with PEDV-Am or PEDV-As isolates and in caesarean-derived, colostrum-deprived pigs 

experimentally infected with PEDV-EU isolate CV-777 (Debouck et al., 1981; Sueyoshi et al., 1995; 

Kim and Chae, 2000; Stevenson et al., 2013). More details are provided for each study in Table 8 of 

Appendix D. 

4.2.3. Possible impact of the introduction of PEDV-Am into the EU 

Within an immune population, protecting sucking piglets from PEDV, the most critical group in terms 

of clinical impact, depends on the level of lactogenic immunity provided by an immune dam.  The 

effect of introducing a PEDV-Am isolate into the European pig population will depend on the level of 

PEDV-EU-specific immunity and the cross-protection between PEDV-EU and PEDV-Am isolates. 

The susceptibility of pigs to PEDV will probably differ between Member States and parts thereof as it 

depends on the local PED history. As described in section 2.2.1, only limited data are available from 

preliminary testing on the seroprevalence levels against PEDV-EU in Member States. In Member 

States or regions where no PEDV infections have ever occurred or where no seropositive animals are 

present, the pig population is expected to be highly susceptible to PEDV of EU, Asian or American 

origin. Although some PEDV-EU seropositive animals might be present in some Member States, it is 

not known which level of immunity is required in individual animals or at herd or regional levels to 

achieve protective immunity and hence to prevent infection. Therefore, any estimation of the 

susceptibility of the European pig population to PEDV-EU infection would have a high uncertainty at 

the moment.  

The lack of data regarding cross-protection between PEDV-EU and PEDV-Am isolates described in 

section 3.2, makes it impossible to predict the potential impact of introducing a PEDV-Am strain into 

the current European pig population. 

The apparent low impact of recent PED outbreaks in Italy and Germany caused by viruses having high 

sequence identity to US PEDV may be associated with the level of immunity in the pig population 

and/or farm type and management. Other factors which may influence the impact of possible spread of 

the virus to Member States are the level of cross-protection between different PEDVs and 

seroprevalence (population immunity), which are currently unknown but expected to vary between 

Member States.   

4.3. Description of PDCoV infection 

PDCoV has been detected in 39 out of 42 faecal samples from five farms reporting outbreaks of 

diarrheal disease in sows and piglets (Wang et al., 2014b). The reported death rate in piglets (30-40%) 

was lower than that typically observed with PEDV infection. However, the interpretation of field data 

is difficult, since co-infections with PEDV or other intestinal pathogens are common (ranging from 20 

to 80% of the samples analysed; Marthaler et al., 2014a; Wang et al., 2014b). Preliminary results show 

that two-day-old piglets inoculated with PDCoV under experimental conditions showed diarrheic 

feces on post-inoculation day 2 with 100% morbidity, whereas mortality was variable among the 

litters. Sows developed diarrhea on post-inoculation day 3 and were clinically normal after post-

inoculation day 8. (Dick Hesse, Kansas State University, personal communication, 25 September 

2014). Further analysis of this experiment will provide a better understanding on the viral 

pathogenesis and clinical symptoms associated with PDCoV infection. 

Serological tests specific to PDCoV and aimed at determining the immune status of the pig population 

have recently been developed and are currently in the process of validation (Dick Hesse, Kansas State 

University, personal communication, 25 September 2014). This would allow seroprevalence studies in 
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the near future, which would help our understanding of the spread and impact of PDCoV. Based on 

the currently available field observations from the USA (e.g. Wang et al., 2014b), the current view is 

that PDCoV infections would have a lower impact than PEDV.   

5. Characterization of PDCoV as an emerging disease?  

In order to determine if PDCoV infections as an emerging disease (TOR2), it was assessed whether 

PDCoV fulfils the criteria defined by OIE. 

An emerging disease is defined by OIE as a new occurrence of a disease, infection or infestation in an 

animal, causing a significant impact on animal or public health resulting from (1) a change of a known 

pathogenic agent or its spread to a new geographic area or species; or (2) a previously unrecognized 

pathogenic agent or disease diagnosed for the first time (OIE, 2014h). As described in section 2.3, 

PDCoV was first described in 2012 in Hong Kong (Woo et al., 2012) and additional cases have been 

reported only by the USA, Canada and China.  

As described in section 4.3, PDCoV can induce clinical signs and mortality in pigs, but the available 

reports from the USA and Canada do not suggest a significant impact on animal health within these 

countries. In addition, no zoonotic potential of the virus has been reported. Therefore, the current 

knowledge of PDCoV leaves open questions on whether it can be classified as an emerging disease.  

6. Presence and survival of PEDV and PDCoV in matrices 

6.1. Collection of information 

In order to describe the presence and survival of PEDV and PDCoV in different matrices and their role 

in the transmission of the virus (TOR5), an extensive literature review has been performed to collect 

information on the detection of genetic material and/or infectious viruses in different matrices, 

survival of the virus in the matrices and the possible role of the matrices in the transmission of PEDV 

or PDCoV (see Appendix A). A search of grey literature on the internet was also performed and 

experts identified relevant publications from the period before 2004. Detailed information is provided 

in Appendix E. Sections 6.2 and 6.3 provide an overview of the available scientific evidence and 

identify the data gaps. Ranking of the different matrices according to their probability of PEDV 

transmission was not performed in this scientific opinion. It is interesting to note that a full risk 

assessment has recently been done by the French Agency for Food, Environmental and Occupational 

Health & Safety (ANSES, 2014) based on (1) the probability that a given matrix will be a source of 

virus, (2) the probability of contact occurring between pigs and the matrix and (3) information on the 

existence of imports of that matrix into France from an infected country. The outcomes of this 

scientific opinion and the ANSES risk assessment cannot be directly compared, as different 

approaches are used. 

6.2. Description of PEDV 

6.2.1. PEDV hosts and tissue tropism  

Pigs
21

 are considered the main host of PEDV. After infection through the oral route, the virus 

replicates in epithelial cells of the small intestinal villi, particularly in the jejunum and ileum, but also 

possibly in the colon (Jung et al., 2014). Faecal shedding of PEDV is detected 24 hpi and diarrhoea is 

observed between 22 and 36 hpi. Given the high levels of PEDV replication reported in the intestinal 

tract (up to 12.3 log10 genome equivalents (GE)/mL) (Jung et al., 2014), leakage of viral components 

(e.g. incomplete virus particles containing RNA) or even infectious viruses of other tissues, such as 

blood, might be a possibility
22

. PEDV RNA was detected in the serum of infected piglets after the 

appearance of clinical signs, in the serum of piglets with acute diarrhoea in field conditions and in the 

                                                      
21 To date, there have been no reports of PEDV in wild pigs but there is no reason why the virus would not affect wild pigs 
22 PEDV RNA has been detected in serum. The term viremia has not been used, as the infectious virus has not been 

demonstrated in blood.  

http://www.oie.int/fileadmin/home/eng/health_standards/tahc/2010/en_glossaire.htm#terme_animal
http://www.oie.int/fileadmin/home/eng/health_standards/tahc/2010/en_glossaire.htm#terme_maladie


PEDV and PDCoV 

 

EFSA Journal 2014;12(10):3877  20 

serum of piglets that were in direct contact with experimentally infected piglets (Hesse et al., 2014; 

Jung et al., 2014). However, the amount of PEDV RNA detected in serum has been reported to be 

10.000 – 10 million times lower compared to the level in faeces (Jung et al, 2014).  At present, there 

are no data showing PEDV replication in tissues outside the intestinal tract. 

There is no evidence at the moment that any other animal species act as a host for PEDV. Some tissue 

samples of geese, buzzards and a stray cat have been reported positive for PEDV RNA, but it is not 

clear if the virus replicates in these animals (see Table 9 in Appendix E). On the other hand, neither 

PEDV RNA nor PEDV-specific antibodies were detected in samples of experimentally PEDV-

infected mice and sparrows or in samples of naturally exposed sparrows (see Table 9 in Appendix E). 

Research is ongoing to assess the role of birds and rodents in the spread of PEDV.  

6.2.2. Data on PEDV presence in matrices 

This section focuses on matrices that may contain PEDV as a result of their porcine origin, and does 

not include materials which may have become contaminated from such porcine matrices. Matrices 

taken into consideration are live pigs, porcine faecal material (faeces and slurry), porcine semen and 

embryos, porcine whole blood, spray-dried porcine blood and plasma
23

, other porcine products 

permitted in pig feed (e.g. red blood cells, hydrolyzed proteins, fat, gelatin and collagen)
24

 and 

untreated pig products/swill
25

, and the air.  

Many other matrices could become contaminated with PEDV (e.g. via faeces) and might also be 

relevant for the transmission of PEDV. The risk from these matrices is dependent on (1) their 

probability of being contaminated with PEDV and (2) the likelihood of transfer of the infectious virus 

to susceptible pigs. However, as indicated in the introduction, this scientific opinion does not include a 

full risk assessment on potential entry routes of PEDV.   

For each of the considered matrices, the text below will describe whether or not detection of RNA 

and/or infectious viruses
26

 has been reported, the survival of the virus in the matrix and whether or not 

the matrix has been reported to contribute to transmission of the virus. A summary is presented in 

Table 1 and detailed information is available in Table 10-13 of Appendix E. 

6.2.2.1. Live pigs 

As described in section 6.2.1., PEDV RNA and viral replication has been detected in intestinal tissues 

of infected pigs. Faecal shedding of PEDV is reported from 24 to 48 hpi and lasts, in general, for about 

one week (Carvajal et al., 1995; Song et al., 2006; Hesse et al., 2014), although shedding for a period 

of one to two months has been reported (Hesse et al., 2014; Sun et al., 2014). Faecal shedding of 

PEDV is considered the main pathway that contributes to the spread of PEDV from live pigs. The viral 

titers are highest in faeces (see section 6.2.2.2 below) and the oral-faecal route is considered the main 

route of PEDV transmission. Indeed, a recent experiment showed seroconversion of animals in direct 

contact with infected animals, whereas animals exposed only to aerosols of infected animals did not 

seroconvert (Hesse et al., 2014). At the moment, specific measures are in place to prevent the import 

of PEDV-infected pigs into the EU
27

. 

                                                      
23 Based on the Commission Implementing Regulation (EU) No 483/2014 
24 Based on Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the 

prevention, control and eradication of certain transmissible spongiform encephalopathies. Available online:  

http://ec.europa.eu/food/fs/bse/bse36_en.pdf (accessed 23 July 2014). 
25 Low biosecurity pig holdings commonly use swill as supplementary feed, often including untreated pork or pig products. 

This is, however, illegal within the EU according to the Animal By-product Regulation no. (EC) 1069/2009. 
26 Positive result in virus isolation, bioassay or transmission experiment. 
27 Commission implementing regulation (EU) No 750/2014. Available online: http://eur-lex.europa.eu/legal-content/EN/

TXT/PDF/?uri=CELEX:32014R0750&from=EN (accessed 30 September 2014). 

http://ec.europa.eu/food/fs/bse/bse36_en.pdf
http://eur-lex.europa.eu/legal-content/EN/‌TXT/PDF/?uri=CELEX:32014R0750&from=EN
http://eur-lex.europa.eu/legal-content/EN/‌TXT/PDF/?uri=CELEX:32014R0750&from=EN
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Table 1: PEDV in different porcine matrices 

Matrix PEDV RNA 

detected 

Infective PEDV 

detected 

Survival of the virus in the matrix Role reported in 

transmission 

Live pigs Yes Yes Faecal shedding of PEDV initiates 24-48 hours post-infection and lasts, 

in general, about one week, although shedding for a period of one to two 

months has been reported 

Yes 

Faeces Yes Yes PEDV remains infectious when faeces are heated to 62.7°C (145°F) for 

10 minutes or when faeces are incubated between 40 and 60°C with a 

relative humidity ranging from 30 to 70% for up to seven days; low 

infective dose but exact viral titer is not known 

Yes 

Slurry No data 

available 

No data available
(b)

 PEDV remains infectious when spiked in slurry and stored for 14 days at 

room temperature and at least for 28 days when stored at 4°C and -20°C 

No data available
(b)

 

Semen Yes No data available
(b)

 No data available
(b)

 No data available
(b)

 

Embryos No data 

available
(b)

 

No data available
(b)

 No data available
(b)

 No data available
(b)

 

Whole blood Yes No data available
(b)

 No data available
(b)

 No data available
(b)

 

Spray-dried porcine 

blood and plasma 

Yes  Yes  It is reported that spray-drying of porcine plasma can inactivate PEDV. 

Infectious PEDV has been detected in SDPP in one study but the origin 

of the infectious PEDV in SDPP is not clear (cross-contamination or 

inefficient inactivation)  

No experimental proof that 

pigs have been infected via 

feed containing PEDV-

contaminated SDPP, but 

very low concentrations of 

infectious PEDV in feed 

containing PEDV PCR-

positive SDPP cannot be 

excluded at the moment 

Other porcine-

derived feed 

components
(a)

 

No data 

available
(b)

 

No data available
(b)

 No data available
(b)

 No data available
(b)

 

Air Yes Yes (within a room)/no 

(long distance) 

No data available
(b)

 Yes (within a room)/no 

(long distance) 
(a) Including red blood cells, hydrolyzed proteins, fat, gelatin, collagen and untreated pig products (swill)  
(b) No studies found 
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6.2.2.2. Porcine faeces 

PEDV is shed in large amounts in faeces (e.g. levels of up to 10
6.85

 GE/mL and up to 10
12.3

 GE/mL 

have been reported by Sun et al., 2014, and Jung et al., 2014, respectively) and PEDV has been 

isolated from this matrix (e.g. Marthaler et al., 2013). Faeces can be considered the main PEDV source 

for transmission between pigs through an oral-fecal process. In general, PEDV stability is adversely 

affected by increasing temperatures (Hofmann and Wyler, 1989; Pospischil et al., 2002; Song and 

Park, 2012). Two preliminary reports
28,29

 from recently performed experiments suggest that PEDV 

remains infectious when faeces are heated to 62.7°C (145°F) for 10 minutes or when faeces are 

incubated at between 40 and 60°C with relative humidity ranging from 30 to 70% for up to seven days 

(see Table 11 and Table 12 in Appendix E). One of these reports
28

 also describes an experiment to 

estimate the minimal infectious dose of a PEDV-Am isolate, using 10-fold serial dilutions from an 

initial clarified homogenate of intestinal mucosa sampled from a PED-affected piglet. The reported 

results suggest that piglets could be infected with dilutions of the inoculum containing PEDV levels 

below the detection limit of the RT-PCR (which is not specified) (seeTable 13 Table 12  in Appendix 

E). These preliminary results suggest that very low PEDV titers in faeces are infectious, but the 

minimum infectious viral titer is not known. 

Many other objects can become contaminated with PEDV-containing faeces and hence contribute to 

the transmission of PEDV. Mechanical transportation of the virus by humans (e.g. on clothes or boots) 

or vehicles is an issue because of the apparent low infectious dose required to infect a piglet and the 

relative resistance of the virus especially in cold and wet conditions. Contamination of trailers with 

faeces has been shown to be an important vehicle of virus spread between farms in the USA leading to 

drastic changes in biosecurity and disinfection procedures of vehicles (Lowe et al., 2014). Preliminary 

experimental results
28

 suggest that PEDV survives one week when spiked in water and stored at 25°C, 

but data underpinning this statement were not found.  

6.2.2.3. Porcine slurry 

No data were found on the identification of PEDV RNA or infectious virus in slurry or on 

transmission of PEDV via slurry. Preliminary experimental results
28

 suggest that PEDV remains 

infectious when spiked slurry is stored for 14 days at room temperature (~25°C) or stored for 28 days 

(or more
30

) at 4 °C or -20 °C, with relative humidity ranging from 30 to 70%. 

6.2.2.4. Porcine semen 

PEDV RNA has been detected at low levels in semen from healthy boars located on three different 

farms in China, with copy numbers between 10
1.46

 and 10
3.65

/mL (Sun et al., 2014). Detection of 

PEDV RNA in semen is also mentioned by other authors, although no data are provided and these 

authors state that contamination of the samples cannot be excluded (Dufresne and Robins, 2014). 

There are no data available on the detection of infectious virus in semen or on the possible role of 

semen in the transmission of PEDV. 

6.2.2.5. Porcine embryos 

As PEDV RNA has been detected in serum, PEDV could be present in embryos, but there are no 

studies found that looked for the presence of PEDV in porcine embryos. There are also no data 

available on the detection of infectious virus in porcine embryos or on the transmission of PEDV via 

porcine embryos. 

                                                      
28 http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf (accessed 24 July 2014) 
29 http://www.pork.org/filelibrary/Holtkamp%2013-227%2012-20-13.pdf (accessed 24 July 2014) 
30 28 days was last time point of sampling in the experiment. 

http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf
http://www.pork.org/filelibrary/Holtkamp%2013-227%2012-20-13.pdf
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6.2.2.6. Porcine whole blood 

PEDV RNA has been detected at low levels in the serum fraction of whole blood but there are no data 

reported on the detection of infectious virus in this matrix (see section 6.2.1; Table 10 in Appendix E). 

No reports could be found describing a role of whole blood in the transmission of PEDV.  

Whole blood is collected at slaughterhouses for further processing and used as an animal by-product. 

Blood from slaughterhouse animals can be collected using (1) an open draining system, in which 

blood from the animal is drained into buckets or trays, or (2) a closed draining system, in which blood 

from the slaughterhouse animal is not exposed to air and is drained directly from the body of the 

animal, for example using a hollow knife connected to vacuum piping (Bah et al., 2013). PEDV cross-

contamination of blood cannot be excluded, especially when the open draining system is used (Davila 

et al., 2006). 

6.2.2.7. Spray-dried porcine blood and plasma 

SDPP incorporated in piglet feed is used to improve the performance of piglets. The PEDV-infectivity 

of artificially contaminated bovine plasma before and after the spray-drying process was evaluated on 

VERO cell monolayers. The study showed that, although still PCR positive, the spray-dried plasma 

did not contain infectious PEDV, meaning that the process inactivated the virus (Pujols and Segalés, 

2014). However, isolation of PEDV in cell culture is difficult (Shibata et al., 2000; Chen et al., 2014b; 

Pasick et al., 2014) and may be a less sensitive model for evaluating PEDV infectivity than a swine 

bioassay. A very recent study from Gerber and colleagues (2014b), indicates that an experimental 

spray-drying process was effective in activating infectious PEDV in plasma, since no PEDV RNA was 

present in faeces of inoculated piglets (at 3 dpi) and none of the pigs seroconverted (by 14 dpi). 

The Ontario Ministry of Agriculture and Food reported in February 2014 that a particular lot of SDPP 

used in feed pellets contained PEDV genetic material
31

 (no data shown). The Canadian Food 

Inspection Agency confirmed by RT-PCR that both the plasma and the feed pellets contained PEDV 

genetic material
32

 (Pasick et al., 2014).  

After the detection of PEDV RNA-positive SDPP, experiments were performed to assess whether or 

not this feed component contained infectious virus. Bioassay studies performed by Pasick and 

colleagues (2014) demonstrated that an implicated SDPP lot did contain PEDV capable of infecting 

and causing clinical disease in pigs. It is not clear if the presence of infectious PEDV in this lot of 

SDPP was due to inefficient inactivation of PEDV during spray-drying or whether cross-

contamination after spray-drying took place. On the other hand, preliminary results of two other 

experiments could not demonstrate the presence of infectious virus in SDPP when piglets were 

inoculated with PEDV RNA-positive plasma, although the data from these studies are not yet 

published in a peer-reviewed journal (experiments from the US Food and Drug Administration and the 

University of Minnesota; see Table 10 in Appendix E). Cross contamination of SDPP with PEDV can 

occur at any point during the manufacturing, packaging and storage processes and/or during 

transportation of the product, owing to a breach in good manufacturing practices and/or biosecurity. 

Overall, it can be concluded that one study reported the presence of infectious PEDV in PEDV RNA-

positive SDPP.  

In addition it has been examined whether or not feed containing PEDV-contaminated SDPP could 

cause infection of piglets. Pigs that received feed supplemented with the Canadian infectious SDPP lot 

did not become infected with PEDV (Pasick et al., 2014). In a study by Opriessnig and collaborators 

(2014), commercial SDPP that was naturally RT-PCR positive for PEDV RNA (3.3 log10 PEDV RNA 

copies/g of the final diet) was fed to two-week-old piglets negative for PEDV. The piglets did not shed 

PEDV RNA and did not seroconvert. The authors concluded that the PEDV RNA present in the SDPP 

                                                      
31 http://www.omafra.gov.on.ca/english/food/inspection/ahw/PED-advisory.html (accessed 30 July 2014) 
32 http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/

1392762820068 (accessed 30 July 2014) 

http://www.omafra.gov.on.ca/english/food/inspection/ahw/PED-advisory.html
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/‌1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/‌1392762820068
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lot used in the diet was not infectious. Preliminary results of two other experiments also suggest that 

feeding pigs with a diet containing SDPP that was PEDV RNA-positive could not infect the animals, 

although the data of these studies are not yet published in a peer-reviewed journal (Campbell et al., 

2014 and study from ISU; see Table 10 in Appendix E). Overall, there is no experimental evidence at 

the moment that piglets can become infected with PEDV when they receive feed containing PEDV-

contaminated SDPP. However, testing large numbers of animals is required to detect very low 

concentrations of infectious PEDV in feed containing PCR-positive PEDV SDPP. 

Experimental results suggest that PEDV can survive in SDPP for up to three weeks, two weeks and 

less than one week when SDPP contaminated with PEDV is stored at 4°C, 12°C and 22°C, 

respectively (Pujols and Segalés, 2014; see Table 10 in Appendix E). The virus survives longer in wet 

feed than in dry feed (28 and 7 days, respectively; see Table 11 in Appendix E). Further processing of 

SDPP to make pelleted feed might contribute to the inactivation of PEDV since a typical feed pelleting 

system uses temperatures between 70 and 100 °C (Nitikanchana, 2014).   

The SDPP intended for the feeding of porcine animals that is produced and/or imported into the EU 

must be submitted to a heat treatment at a temperature of at least 80°C throughout the substance; 

should fulfill the physico-chemical and microbial requirements described in the European legislation 

and should be stored in dry warehouse conditions under room temperature for at least six weeks
33

. The 

design and implementation of adequate quality control systems is crucial to guarantee that every lot of 

SDPP meets these criteria. Spray-drying is affected by many parameters such as in-out air 

temperature, product flow, solids content, droplet size distribution and dryer configuration. Some of 

these parameters can vary amongst production cycles and/or methods. It is unknown whether or not 

such variations would affect PEDV inactivation. The current legal microbial requirements define 

maximum levels for Salmonella and Enterobacteriaceae, but do not require analysis for any virus. 

It remains unclear if SDPP and pig feed in general are important in the epidemiology of PEDV. 

Epidemiological studies carried out in Ontario (Canada) in the first farms infected by PEDV showed 

that 18 of the 20 first-affected farms received their feed from the same company, as did the isolated 

case in Prince Edward Island, Canada
34

. On the other hand, PEDV PCR-positive plasma was shipped 

from the USA to Brazil and Western Canada in 2013, but no PEDV cases have been reported in these 

regions (Crenshaw et al., 2014). All experiments reported so far suggest that PEDV PCR positive 

SDPP in feed is incapable of transferring PEDV, since all animals remained negative (see Table 10 in 

Appendix E). It might be that infectious PEDV is present at very low concentrations in feed containing 

PEDV PCR-positive SDPP, suggesting that the probability of detecting at least one infected piglet 

during a bioassay would be very low (Pasick et al., 2014). There is one experiment reported (Dee et 

al., 2014) in which pigs received feed mixed with PEDV PCR-positive material collected from the 

interior wall of feed bins (using Swiffer pads and paint rollers) from four clinically affected farms. The 

exact source of PEDV contamination in the feed is undetermined. The pigs demonstrated diarrhea and 

their faeces were PEDV PCR-positive from four days after treatment until study termination at seven 

days after treatment. Overall, PEDV can be transmitted via feed but more data are required to assess 

the importance of PEDV spread via feed.  

6.2.2.8. Other porcine-derived feed components 

Detection of PEDV RNA or infectious virus in other processed swine products that could be used in 

animal feed (hydrolyzed proteins, gelatin, collagen, animal fat) has not been reported to date. 

Although not allowed in the EU
24

, pigs may be fed with untreated pork meat and other pig products, 

often referred to as swill. As mentioned earlier (see section 6.2.1), a high level of PEDV replication 

has been detected in the intestinal tissue, and PEDV RNA has been detected at low levels in serum. 

There are no data showing PEDV replication in tissues outside the intestinal tract. Based on this, 

                                                      
33Annex X, Chapter I of Commission Regulation (EU) No 142/2011 implementing Regulation (EC) No 1069/2009 of the 

European Parliament and of the Council; Commission implementing Regulation (EU) No 483/2014 
34 http://www.farmscape.com/f2ShowScript.aspx?i=24577&q=Contaminated+Feed+Most+Likely+Source+of+Ontario+

PED+Outbreak (accessed 30 July 2014) 

http://www.farmscape.com/f2ShowScript.aspx?i=24577&q=Contaminated+Feed+Most+Likely+Source+of+Ontario+‌PED+Outbreak
http://www.farmscape.com/f2ShowScript.aspx?i=24577&q=Contaminated+Feed+Most+Likely+Source+of+Ontario+‌PED+Outbreak
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porcine swill (particularly untreated pig intestines) may contain infectious PEDV, but no data are 

available that describe the detection of PEDV RNA or the infectious virus in porcine swill.  

There are also no data available on the detection of PEDV RNA or the infectious virus in pork muscle 

tissue, or on the role of this matrix in the transmission of PEDV. The consumption of pork muscle 

tissue by humans is not a problem, since PEDV has no zoonotic capacity
35

. 

6.2.2.9. Air 

PEDV RNA has been detected in air samples collected in and around naturally infected herds (up to 

10 miles downwind) and in isolation rooms where piglets were experimentally infected (Alonso et al., 

2014) (see details of different studies in Table 10 in Appendix E). Air samples collected in field 

conditions were found to be negative in a bioassay
36

, indicating that the RNA detected did not belong 

to infectious virus particles. In contrast, air samples collected under experimental conditions were 

demonstrated as infectious. On the other hand, preliminary results of another experimental study 

indicate that no viral antigen or seroconversion could be detected in animals of an aerosol control 

group, despite the presence of PEDV RNA in nasal and oral fluids sampled from these animals (Hesse 

et al., 2014). Overall, the current available data suggest that PEDV may be transmitted via air for short 

distances (within an isolation room), but there is no proof that PEDV can be transmitted naturally 

between pigs via air. More data are required to confirm the reported findings and to obtain knowledge 

on the survival of PEDV in air. 

6.3. Description of PDCoV 

PDCoV RNA has been detected in porcine intestinal samples, faeces and feed (Li et al., 2014; 

Marthaler et al., 2014a; Wang et al., 2014b;) but there is currently no information on the presence of 

PDCoV in slurry, semen, embryos, porcine whole blood, SDPP, other porcine-derived feed 

components or air. At the moment, there are no reports on the isolation of infectious PDCoV or 

experimental infection of pigs with PDCoV-contaminated material. It could be anticipated that the 

presence and survival of PDCoV in different matrices is comparable to that of other intestinal porcine 

coronaviruses such as PEDV and TGEV. 

CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

PEDV and PDCoV are a rapidly evolving area of knowledge. This scientific opinion reflects current 

understanding at the time of publication. 

TOR1: The current epidemiological situation in North America and Asia and elsewhere in the world 

regarding PED and the new porcine deltacoronavirus. 

PED in Europe:  

 Only limited active monitoring is conducted.  

 Only a few Member States reported PED clinical cases and/or PEDV-seropositive animals 

within the last 10 years. 

 In 2014, some outbreaks have been reported in Germany and Italy. 

 No vaccination has been used. 

PED in Asia: 

 Only limited active monitoring is conducted. 

 Many outbreaks have been reported in several countries within the last 10 years. 

 Vaccination has been used in several countries, which might influence the epidemiological 

situation. 

                                                      
35 There are no human cases reported 
36 Two mL pool of three positive air samples diluted at 1:10 to obtain 20 mL of inoculation material per pig. 
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PED in the Americas: 

 Only limited active monitoring is conducted. 

 The first outbreak was reported in May 2013 in the USA, followed by a rapid spread 

throughout the country and outbreaks reported by several countries in North, Central and 

South America. 

 In 2014, new vaccines were granted conditional licences in the USA, which may influence the 

epidemiological situation. 

PDCoV: 

 Diagnostic capabilities are limited in many countries and, hence, only very limited testing is 

carried out. 

 PDCoV has only been reported from Hong Kong, US, Canada and China 

TOR3: Possible differences between the European classical PED alphacoronavirus strains and the ones 

currently circulating in the rest of the world, in particular in the Americas, and the possible existence 

of cross-protecting immunity. 

 Few sequence data from PEDV-EU isolates are available, limited to historic (1970s and 

1980s) and very recent (2014) cases. A high level of sequence identity was found between 

recent German and Italian viruses (2014) and PEDV-Am viruses. 

 An original and a variant PEDV-Am strain, both having high nucleotide sequence identity to 

PEDV-As isolates from 2011-2012, are now co-circulating in the Americas. Retrospective 

studies indicate that at least two PEDV strains were introduced into the USA at a similar time. 

 Differences in the nucleotide sequence of PEDVs have been identified, but their effects (if 

any) on virulence of the virus is currently unknown. No comparative experimental studies 

have been conducted or reported.  

 Serological cross-reactivity between PEDV-EU and PEDV-Am is reported; however, no data 

regarding cross-protection are available. 

 The evolution of PEDVs in Europe and the link to PEDV strains circulating in other parts of 

the world is not well understood at present 

TOR4: Impact of the different PED alphacoronavirus strains and of the new porcine deltacoronavirus 

in pigs in different immunological scenarios. 

PEDV: 

 The impact of recently reported PED outbreaks in Asia (after 2010) and the US seems to be 

more severe than what has been recently described in Europe.  

 The clinical signs of PEDV infections in naive pigs are similar in different countries indicating 

that different PEDV isolates induce similar clinical signs. 

 The different impacts of PED outbreaks in different countries cannot be directly compared 

owing to variation for instance, in age group of the affected pigs, production systems, 

biosecurity, farm management, herd size, the immune status of the population and herd 

sanitary status.  

 Mortality of up to 100% has been reported in suckling piglets for PEDV-EU, PEDV-Am and 

PEDV-As.  

 An apparent low impact of recent PED outbreaks caused by viruses that have high sequence 

identity to US PEDV, has been reported in Italy and Germany. Factors which might influence 

the impact of a possible introduction of a US PEDV and spread of the virus to Member States 

include the level of cross-protection between different PEDVs and sero-prevalence 

(population immunity), which are currently unknown but expected to vary between Member 

States. The recent impact of PED in Europe needs to be interpreted with care because only a 

small number of outbreaks have been described. 
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PDCoV: 

 Diagnostic tools to detect PDCoV-specific antibodies have recently been developed and are 

currently in the process of validation 

 Based on the currently available field observations from the USA, the current view is that 

PDCoV infections would have a lower impact than PEDV.   

TOR2: Characterization of the new porcine deltacoronavirus as an emerging disease, especially as 

regards the severity of the disease induced. 

 At present, there is no clear evidence that PDCoV infections is causing a significant impact on 

animal or public health.  

TOR5: Risk assessment of potential entry routes of PED and the new porcine deltacoronavirus in the 

EU ranking them on the basis of the level of risk with a view to enhance risk mitigation, prevention 

and preparedness. 

PEDV: 

 Infected live animals and faeces have been reported to transmit PEDV. The infectious virus 

can survive in slurry, but at present there are no data available on the role of this matrix in 

PEDV transmission. 

 High levels of infectious PEDV are shed in faeces and contribute to contamination of various 

objects (e.g. vehicles, humans) and feed. 

 The transmission of PEDV via feed has been shown but more data are required to assess the 

importance of PEDV spread via feed. 

 PEDV RNA has been detected at low levels in the serum fraction of whole blood, but, to date, no 

data exist on the infectious virus in this matrix. 

 Faecal cross-contamination of blood during collection at slaughterhouses cannot be excluded. 

 It is reported that spray-drying of porcine plasma can inactivate PEDV. However, the influence of 

variations in spray-drying processes has not been sufficiently validated for PEDV.  

 Infectious PEDV has been detected in SDPP in one study, but the origin of the infectious PEDV in 

SDPP is not clear (cross-contamination or inadequate spray-drying).   

 The infectious virus has been detected in air collected under experimental conditions and so 

PEDV may be transmitted via the air for short distances. Low levels of PEDV RNA have been 

detected in semen, but there are no data available on the presence of infectious virus in this 

matrix. 

 There are currently no data available on the presence of PEDV in embryos, pork meat or other 

porcine-derived feed components such as red blood cells, hydrolysed proteins, fat, gelatine 

and collagen. 

 Porcine swill, particularly including untreated pig intestines, can contain infectious PEDV but 

there are no data available at the moment on the role of this matrix in PEDV transmission. 

PDCoV: 

 There is a lack of data on the presence and survival of PDCoV in different matrices. It could 

be anticipated that the presence and survival of PDCoV in different matrices is comparable to 

that of other intestinal porcine coronaviruses such as PEDV and TGEV. 
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RECOMMENDATIONS 

TOR1: The current epidemiological situation in North America and Asia and elsewhere in the world 

as regard PED and the new porcine deltacoronavirus. 

 Promote harmonized diagnostic tools for PEDV as well as for PDCoV. 

TOR3: Possible differences between the European classical PED alphacoronavirus strains and the ones 

currently circulating in the rest of the world, in particular in the Americas, and the possible existence 

of cross-protecting immunity. 

 The genetic sequence of further recent PEDV-EU isolates should be determined to understand 

PEDV evolution in Europe and the possible link with PEDV-Am and/or PEDV-As strains.  

 Comparative animal studies including PEDV-EU, PEDV-Am and PEDV-As strains should be 

performed to obtain knowledge on their differences in virulence. 

 More knowledge is required regarding the cross-protection between PEDV-EU, PEDV-Am 

and PEDV-As strains, which could be acquired by performing cross-infection experiments.  

TOR4: Impact of the different PED alphacoronavirus strains and of the new porcine deltacoronavirus 

in pigs in different immunological scenarios. 

 The assessment of the possible impact of PEDV infection in the EU would require monitoring 

of the PEDV-seroprevalence level in Europe.  

TOR2: Characterisation of the new porcine deltacoronavirus as an emerging disease, especially as 

regards the severity of the disease induced. 

 Experimental studies are needed to obtain more knowledge on the pathogenesis and clinical 

signs of PDCoV infection. 

TOR5: Risk assessment of potential entry routes of PED and the new porcine deltacoronavirus in the 

EU ranking them on the basis of the level of risk with a view to enhance risk mitigation, prevention 

and preparedness. 

 More knowledge is required to assess the importance of feed components, blood and semen in 

the spread of PEDV.  

 Cross-contamination of any object or feed with intestinal contents and faeces from PEDV-

infected pigs should be prevented.  

 The influence of variations in spray-drying processes should be validated more extensively for 

PEDV.  
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APPENDICES  

Appendix A.  Extensive literature review 

An extensive literature search was performed to collect information on PEDV and PDCoV published 

in the last 10 years (2004-June 2014). The search string (Pig or porcine) AND ((“porcine epidemic 

diarrh*” or PED or PEDV) OR (“deltacoronavirus” or PDCoV or SDCV or SCDV or PCDV) OR 

SECoV) was entered in Web of Science and resulted in the identification of 450 records. The number 

of papers reduced to 399 after removing the duplicates.  

A publication was included in the review if (1) it reported on PEDV and/or PDCoV and (2) the main 

topic of the paper was on (a) prevalence, incidence, occurrence of the virus(es), (b) seroprevalence 

against the virus(es), (c) immune response against the virus(es), (d) sequence and/or phenotypic 

characteristics of the virus(es), (e) impact of the virus(es) (e.g. morbidity, mortality, production losses) 

and/or (f) virus presence in matrices (e.g. faeces, semen, plasma). A publication was excluded when it 

did not meet the inclusion criteria or when it was not written in English. 

Screening of the titles reduced the number of included papers to 199, which were then screened based 

on the abstract and full text. An update of the search was done end Sep 2014 and resulted in the 

identification of 23 additional publications. Data were extracted from 138 publications and are mainly 

presented in the Appendices below. 
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Appendix B.  Information on PEDV and PDCoV outbreaks in the period 2004-2014 

1. PEDV 

The members of the EFSA network on Animal Health and Welfare were contacted to provide information on the occurrence of PEDV in their country in the period 

2004-2014. Information was provided by twenty-one countries ( 

Table 3). PEDV outbreaks were identified in Germany, Italy, Estonia and Hungary, whereas the other countries indicated that no data were available, no cases 

were reported or the country was negative for PEDV. However, none of the European countries performs active monitoring, meaning that the absence of 

identified cases provides only limited assurance that the virus is absent.   

Table 2: Information on PEDV occurrence in the period 2004-2014 obtained by an extensive search of the scientific literature and relevant websites 

Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Europe 

Czech 

Republic 

     15 samples from 6 

herds/80 samples from 

38 herds 

Rodak et al., 2005 

Italy Po Valley 2005 2006 63  22/55 Martelli et al., 2008 

  2006-2007    Faeces: 44/215 in PCR 

and 42/215 in ELISA, 

Intestinal content: 6/291 

in PCR and 13/291 in 

ELISA 

Sozzi et al., 2010 

Germany North-Rhine 

Westphalia 

Spring 2014  1   Henninger and Schwarz, 2014 

Asia 

Japan Okinawa 01/10/2013  4   OIE, 2014e
 

Ibaraki 18/11/2013  5   

Kagoshima 11/12/2013  156   

Miyazaki 13/12/2013  68   

Kumamoto 28/01/2014  20   

Aichi 16/02/2014  20   

Aomori 24/02/2014  10   

Kochi 04/03/2014  3   

Okayama 13/03/2014  2   
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Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Tottori 13/03/2014     

Saga 14/03/2014  9   

Oita 16/03/2014  5   

Fukuoka 20/03/2014  4   

Chiba 27/03/2014  29   

Nagasaki 28/03/2014  6   

Saitama 28/03/2014     

Mie 29/03/2014  14   

Kagawa 02/04/2014     

Ehime 04/04/2014  2   

Tochigi 07/04/2014  9   

Gunma 07/04/2014  6   

Niigata 10/04/2014  13   

Shizuoka 10/04/2014  5   

Ishikawa 11/04/2014     

Toyama 11/04/2014  2   

Fukushima 11/04/2014  2   

Yamagata 12/04/2014  2   

Gifu- 14/04/2014  2   

Hokkaido- 14/04/2014  3   

Fukui 15/04/2014     

Iwate 16/04/2014  8   

Akita 19/04/2014     

Miyagi 21/04/2014  3   

Thailand Nakornpathom  December 

2007  

March 2008  8  33/33 Puranaveja et al., 2009 

  2008 2012 50   Temeeyasen et al., 2014 

China Qinghai      Lan et al., 2005 

Heilongjiang 2005   39,128 (2,317)  Junwei et al., 2006 

Shanghai  2006      

five provinces      Chen et al., 2008 
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Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Gansu, 

Heilongjiang, 

Henan, Hunan, 

Inner Mongolia, 

Jiangsu, Jilin 

and Shanghai 

     Chen et al., 2010 

12 provinces January 2011 October 2011 45  278/455 Li et al., 2012a 

Shandong November 

2010 

April 2012   175/217 Wang et al., 2013b 

Shanghai September 

2011 

January 

2012 

  25/95 

 

Ge et al., 2013 

29 provinces     361/504 Chen et al., 2013 

15 provinces Jan 2006 Aug 2011    127 samples Chen et al., 2013b 

Beijing, Hebei 

and Zhejiang 
2011 Jan  2012 Mar    10/10 

Gao et al., 2013 

 5 provinces February 2010 March 2012 55   Li et al., 2013b 

Philippines 
 2006   (60,000)  Morales et al., 2007 

 2007   (2,179)  

Vietnam 

Three provinces 

in southern 

provinces 

2009 2010    Duy et al.. 2011 

South 

Korea 

     754/1024 Oh et al., 2005 

     35/107 Jung et al., 2006. 

     319/737 Park et al., 2007a 

Gyeongbuk 2008 2009    Lee et al., 2010 

 Dec 2013 Jan 2014   10/10 Lee and Lee, 2014 

Taiwan 

central and 

southern 

Taiwan 

n/a n/a n/a 16000 n/a http://focustaiwan.tw/news/aeco/201402170

041.aspx 

central and 

southern 

Taiwan 

Dec 2013 Jan 2014 25   Lin et al., 2014 

The Americas 

USA Ohio 15/04/2013
a
 Ongoing

b
 366

b
 276

a
  

a
OIE 2014c; 

b
USDA, 2014; 

http://focustaiwan.tw/news/aeco/201402170041.aspx
http://focustaiwan.tw/news/aeco/201402170041.aspx
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Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Indiana 22/04/2013
a
 Ongoing

b
  430

b
 324

 a
  

c
http://www.wisconsinagconnection.com/sto

ry-national.php?Id=1388&yr=2014; 
d
Mole, 

2013; 
e
Stevenson et al., 2013 

Iowa 29/04/2013
a
 Ongoing

b
 2314

b
 1912

 a
  

Colorado 06/05/2013
a
 17/08/2014

b
 103

b
 77

 a
  

Minnesota 06/05/2013
a
 Ongoing

b
 1410

b
 976

 a
  

Pennsylvania 06/05/2013
a
 Ongoing

b
  96

b
 82

 a
  

Missouri 20/05/2013
a
 Ongoing

b
  319

b
 132

 a
  

Oklahoma 20/05/2013
a
 Ongoing

b
  445

b
 411

 a
  

South Dakota 27/05/2013
a
 Ongoing

b
  146

b
 61

 a
  

Michigan 27/05/2013
a
 Ongoing

b
  228

b
 130

 a
  

Illinois 27/05/2013
a
 Ongoing

b
  957

b
 542

 a
  

Kansas 03/06/2013
a
 Ongoing

b
  278

b
 243

 a
  

New York 18/06/2013
a
 03/08/2014

b
  7

b
 5

 a
  

North Carolina 24/06/2013
a
 Ongoing

b
  830

b
 585

 a
  

Tennessee 22/072014
a
 24/08/2014

b
  18

b
 11

 a
  

Texas 26/07/2013
a
 Ongoing

b
  107

b
 59

 a
  

Wisconsin 07/08/2013
a
 07/09/2014

b
  25

b
 13

 a
  

Kentucky 08/10/2013
a
 03/08/2014

b
  23

b
 15

 a
  

Maryland 29/10/2013
a
 29/10/2014

b
  1

b
 1

 a
  

Nebraska 02/12/2013
a
 Ongoing

b
 202

b
 89

 a
  

California 27/12/2013
a
 Ongoing

b
  25

b
 10

 a
  

Wyoming 30/12/2013
a
 27/04/2014

b
  32

b
 8

 a
  

South Carolina 06/01/2014
a
 01/05/2014

b
 2

b
 2

 a
  

Arizona 28/01/2014
a
 Ongoing

b
 12

b
 5

 a
  

Idaho 07/02/2014
a
 14/09/2014

b
  6

b
 3

 a
  

Montana 08/02/2014
a
 29/06/2014

b
  3

b
 2

 a
  

North Dakota 26/02/2014
a
 14/09/2014

b
  2

b
 2

 a
  

Vermont 25/03/2014
a
 25/03/2014

b
  1

b
 1

 a
  

Mississippi 04/04/2014
a
 04/04/2014

b
  1

b
 1

 a
  

Virginia 13/04/2014
b
 13/04/2014

b
 1

b
   

Arkansas 23/06/2014
c
 Ongoing

 c
 1

 c
   

Utah 31/08/2014 Ongoing
 b
 6

b
   

 

Canada Ontario 22/01/2014
a
 Ongoing

b
 62

b
   

a
OIE, 2014e;                                    

b
 http://www.ontariopork.on.ca/ped/Home.aspx;  Manitoba 14/02/2014

a
 09/05/2014

c
 2

a,c
   

http://www.ontariopork.on.ca/ped/Home.aspx
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Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Prince Edward 

Island 

14/02/2014
a
 14/02/2014

c
 1

c
   

c
http://manitobapork.com/2014/05/09/secon

d-on-farm-porcine-epidemic-diarrhea-virus-

pedv-case-confirmed-in-manitoba/ Quebec 23/02/2014
a
 07/03/2014

a
 1

c
   

Colombia HUILA 07/03/2014 09/06/2014 12 750 (426)  OIE, 2014g 

Cundinamarca 08/03/2014 09/06/2014 30 2476 (564)  

Tolima 04/04/2014 09/06/2014 1 3 (3)  

Boyacá 24/04/2014 09/06/2014 1 27 (21)  

Santander 12/05/2014 09/06/2014 1 72 (40)  

Dominican 

Republic 

Espaillat 12/11/2013 03/12/2013 1 3200 (2450)  OIE, 2014h 

Santiago 08/02/2014 31/03/2014 1 25065 (20691)  

Santiago 

Rodrigu 

28/03/2014 11/04/2014 1 1300 (71)  

Peravia 02/04/2014 20/05/2014 1 135 (38)  

La Vega 16/04/2014 14/05/2014 1 4790 (684)  

Salcedo 13/05/2014 20/05/2014 1 950 (627)  

Distrito 

Nacional 

27/05/2014 12/06/2014 1 3602 (1509)  

Mexico Aguascalientes, 

Baja, 

California, 

Colima, Federal 

District, 

Guanajuato, 

Guerrero, 

Jalisco, State of 

Mexico, 

Michoacán, 

Morelos, Nuevo 

León, Puebla, 

Querétaro, 

Sinaloa, 

Sonora, 

Tlaxcala and 

Veracruz 

30/07/2013  83   OIE, 2014f 
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Country Region Date first 

outbreak 

(year, month) 

Date last 

outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported cases 

(deaths) 

Number of positive 

/tested samples 

Reference 

Peru Lima 10/10/2013     http://www.perulactea.com/2013/10/10/char

la-nueva-enfermedad-diarreica-afecta-la-

produccion-porcina-ingreso-libre/ 

http://www.oie.int/doc/ged/D4547.PDF 

 

Table 3: Info on PEDV occurrence in European countries in the period 2004-2014 provided to EFSA by country representatives of the AHAW Network 

Country  Info provided to EFSA 

DE, GR, IS, LT  No data  

BE, DK, ES, FI, FR, LV, NO, SE, SI, UK  Not reported  

AT, UK   Not reported (diarrhoea submissions negative in PCR)  

FI  Not reported (samples of pigs with clinical symptoms are tested using the Antigen Rapid PED Ag Test kit and were negative 

in 2010 (n=3), 2011 (n=6), 2012 (n=23), 2013 (n=38) and 2014 (n=1 until May)  

NL  Negative since 2003 (autopsy)  

HU Outbreak in one farm in 2009 (12 piglets) 

EE  Outbreak in 2010 (not documented), few cases in 2011 and 2012, no data 2013  

IT  Outbreak 2005-2006 (see Table 2). From 2008 to 2014 only sporadic outbreaks were observed in growers and finishers 

herds: 71 PED cases in 58 different farms, out of 1563 cases of enteritis (4.54%). 2011 (n=18), 2012 (n=19) and 2013(n=8)  

 

Table 4: Information on current PEDV-specific seroprevalence in European countries obtained from country representatives of the AHAW Network 

Country  PEDV-specific seroprevalence 

AT, DE, EE, ES, FI, FR, GR, HU, IS, LT, LV, 

NL, NO, SE, SI  

No data  

BE  Negative (IPMA assay, 92 farms throughout the country, 5 serum samples per farm, 2014)  

DK  Negative (in-house ELISA; approximately 2500 swine sera per year between 2000 and 2006 with no positive results 

reported during this period) 

IT Antibodies were found in 11 out of 21 farms in 7% to 52% tested animals 

UK  94/206 sera were positive for PEDV-antibodies between 2007 and 2012; estimated GB national level seroprevalence is 9%  

based on samples collected in framework of a Salmonella study in 2013 (558 pigs sampled in 12 abattoirs and originated 

from 395 farms)  

 

http://www.perulactea.com/2013/10/10/charla-nueva-enfermedad-diarreica-afecta-la-produccion-porcina-ingreso-libre/
http://www.perulactea.com/2013/10/10/charla-nueva-enfermedad-diarreica-afecta-la-produccion-porcina-ingreso-libre/
http://www.perulactea.com/2013/10/10/charla-nueva-enfermedad-diarreica-afecta-la-produccion-porcina-ingreso-libre/
http://www.oie.int/doc/ged/D4547.PDF
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Figure 3: Number of laboratory biological accessions positive for PEDV positive in each week in the United States (info obtained from USDA Swine enteric 

coronavirus disease testing summary report (version 01 Oct 2014); https://www.aasv.org/pedv/SECoV_weekly_report_141001.pdf) 
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2. PDCoV 

Table 5: Information on PDCoV occurrence in the period 2004-2014 obtained by an extensive search of the scientific literature and relevant websites 

 

Country Region Date first 

outbreak (year, 

month) 

Date last outbreak 

(year, month) 

Number of 

reported 

outbreaks 

Number of 

reported 

cases (deaths) 

Reference 

US IA 30/03/2013
a
 ongoing

a
 43

a
  

a
USDA, 2014 

IL 30/03/2013
a
 10/08/2014

a
 54

a
  

IN 30/03/2013
a
 ongoing

a
 44

a
  

KS 27/04/2013
a
 01/06/2014

a
 2

a
  

MI 30/03/2013
a
 10/08/2014

a
 15

a
  

MN 30/03/2013
a
 27/07/2014

a
 88

a
  

MO 20/04/2014
a
 17/08/2014

a
 9

a
  

MT 30/03/2014
a
 29/06/2014

a
 2

a
  

NC 13/04/2013
a
 ongoing

a
 11

a
  

NE 06/04/2013
a
 17/08/2014

a
 14

a
  

OH 30/03/2013
a
 24/08/2014

a
 56

a
  

OK 01/06/2013
a
 01/06/2014

a
 1

a
  

PA 06/04/2013
a
 06/07/2014

a
 13

a
  

SD 06/04/2013
a
 13/07/2014

a
 17

a
  

TX 06/04/2013
a
 27/07/2014

a
 4

a
  

 Unknown   10   

Canada Ontario 01/02/2014 14/03/2014 6  http://www.thepigsite.com/swinenews/36095/swine-

deltacoronavirus-detected-on-canadian-pig-farms 

China 5 provinces     Feng et al., 2014 
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Appendix C.  Information on differences between European, Asian and American PEDV strains 

Table 6: Studies describing B-cell epitopes in the PEDV S protein 

Description Reference 

Identification COE neutralizing epitope on S protein: 

Data on the reduction of the plaque-forming ability of PEDV by the COE-specific polyclonal antisera revealed that the COE region of the PEDV spike 

protein might contain the major neutralizing epitope for the virus. The antisera was produced using a recombinant protein using the sequence of the 

European PEDV strain Brl/87, neutralized European PEDV strain CV777. 

Chang et al., 2002  

A truncated form of S1 gene (aa 636-789) was fused to GST and expressed in Escherichia coli. The purified recombinant protein was able to react with 

PEDV antiserum and to elicit formation of neutralization antibodies in mice. The immune serum against the recombinant protein showed binding ability 

to the native S protein of PEDV. 

Sun et al., 2007  

Identification SS2 and SS6 neutralizing epitopes on S protein: 

Mini-GST fusion proteins were scanned by ELISA and Western blotting with the six McAbs, and the result showed that S1D5 (residues 744–759) and 

S1D6 (residues 756–771) are two linear epitopes of the PEDV S protein. The antisera of the epitopes S1D5 and S1D6 could react with the native S 

protein of PEDV. Furthermore, Pepscan of the two linear epitopes demonstrated that SS2 (748YSNIGVCK755) and SS6 (764LQDGQVKI771) are two core 

epitopes on S1D5 and S1D6, respectively, located on the S protein of PEDV. 

Sun et al., 2008  

Identification 2C10 neutralizing epitope on S protein: 

A synthetic peptide whose linear sequence is identical to the 24 aa carboxy-terminal portion of the spike protein (S-CT24) elicited a strong antibody 

response in BALB/c mice. These antibodies exhibited neutralizing activities against the KPEDV-9 strain in focus reduction neutralization tests 

suggesting that the GPRLQPY motif induces neutralizing antibodies against PEDV. 

Cruz et al., 2006 

and 2008 

 

Table 7: Info on sequence differences between PEDV strains reported since 2004 and obtained by an extensive search of the scientific literature  

Country 

(region) 

Sequence info Reference 

Germany 

(North-Rhine 

Westphalia) 

The German virus circulating in North-Rhine Westfalia has 99% sequence identify compared to US PEDV strains, based on the 

sequence of a 651 bp fragment of the S gene. 

Henniger and 

Schwarz, 2014 

US This study reported a PEDV-Am isolate with a 197 aa deletion in the S gene. This large S deletion was not detected in the original 

sample but was introduced in the first cell line passage. At the moment, it is not clear if large S deletion strains circulate naturally in 

the US swine population. 

Oka et al., 2014 
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Country 

(region) 

Sequence info Reference 

US Among 178 US PEDVs collected from 23 states, S1 sequences of 156 cases from 22 states had 99.0-100% nucleotide (nt) identity 

to each other, including the PEDVs initially sequenced after the outbreak in April 2013 (hereafter designated as original US strain). 

In contrast, S1 sequences of the remaining 22 cases from 10 states had only 92.4-93.8% nt identity to the original US strains, while 

they shared 99.6-100% nt identity to each other (hereafter designated as variant US strain). It seems probable that at least two 

genotypes of PEDV have been introduced into the US concurrently and are co-circulating in US swine now. 

Chen et al., 2014a  

US Sequences were also compared to those of 4 additional U.S. PEDV strains and 23 non-U.S. strains. All US PEDV strains were 

genetically closely related to each other (>99.7% nucleotide identity) and were most genetically similar to Chinese strains reported 

in 2011 to 2012. Phylogenetic analyses using different genes of PEDV suggested that the full-length spike gene or the S1 portion is 

appropriate for sequencing to study the genetic relatedness of these viruses. Based on sequence comparison and phylogenetic 

analysis, it appears that the U.S. PEDV strains are genetically closely related to some PEDV strains that were circulating in China 

in 2011 to 2012. The full-length S gene or the S1 portion is appropriate for sequencing to study the genetic relatedness and 

molecular epidemiology of PEDV. 

Chen et al., 2014b  

US (Ohio) 

 

Strain OH851 showed 99% and 97% nt identity to PEDVs currently circulating in the United States (Colorado, Iowa, Indiana, 

Minnesota) for the whole genome and the full-length spike (S) gene, respectively. By distinct contrast, strain OH851 showed only 

89% or even lower nucleotide identity to PEDVs currently circulating in the United States in the first 1,170 nt of the S1 region. It is 

highly possible that the sequence deletions, insertion, and mutations found in variant strain OH851 might have contributed to the 

reduced severity of the clinical disease in the piglets. 

Wang et al., 2014a  

US The genome sequences of a PEDV strain isolated from an infected piglet was compared against its in vitro adapted version. The 

original PEDV strain was grown in Vero cells and passed 10 times serially in a MARC145 cell line. The sequence analysis of the 

native PEDV strain and in vitro passaged virus shows that the cell culture adaptation specifically modifies PEDV spike protein 

whereas the open reading frame 1a/b (ORF1a/b)-encoded polyprotein, the nucleoprotein, NS3B (ORF3), and membrane and 

envelope proteins remain unchanged 

Lawrence et al., 2014 

China The S gene sequences of 10 Guangdong isolates, four PEDV vaccine strains and the USA-Colorado-2013 strain were analysed. The 

same amino acid sequence was found in SS2 (AA 748-755) and 2C10 epitopes (AA 1368-1374) were identical in all strains, 

whereas 2 AA changes were identified in epitope SS6 (AA 764-771) and 16 AA changes were identified in epitope COE (AA 499-

638). Forty-one strains were analysed for N-glycosylation sites. They all contained 9-10 high-specificity N-glycosylation sites, 

three of which are conserved (213NVTS, 778NISI, 1246NKTL). The 127NKTL site seems to be absent in strains isolated after 

2010. In most after-2010 strains, a palmitoylation motif is newly present at site 230 and the 122 site lost, the latter being conserved 

in vaccine and Chinese pre-2011 strains. 

Hao et al., 2014  

China  

(5 provinces) 

The fifteen Chinese field PEDV strains had 96.1-100 % nucleotide and 94.8-100 % deduced amino acid sequence identity to each 

other. Sequence comparison with the other seven selected strains of PEDV revealed that the Chinese field PEDV strains had 

nucleotide sequence identities of 94.2-99.7 % and deduced amino acid sequence identities of 94.1-99.5 %. In addition, the fifteen 

strains showed a high degree of nucleotide sequence identity to the early domestic  strains (98.4-99.7 %) except the LZC strain, but 

less identity to the vaccine strain (CV777) used in China (94.7-97.7 %). Phylogenetic analysis showed that the  Chinese PEDV 

strains are composed of a separate cluster including three early domestic strains (JS-2004-02, LJB/03 and DX) but differ genetically 

from the  vaccine strain (CV777) and the early Korean strains (Chinju99 and SM98). 

Li et al., 2014 
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Country 

(region) 

Sequence info Reference 

Taiwan Eighteen PEDV isolates collected from the Dec 2013 – Jan 2014 outbreak in Taiwan, shared 99.5-100% nucleotide sequence 

identity of the partial S gene (COE domain). Two major clusters, based on the phylogenetic relation of the partial nucleotide 

sequences of the COE domain in the S gene, were detected (Fig. 1). The first cluster was comprised of prototype isolates 

(TW1/A/2013 and TW2/B/2013) and Chinese strains LJB/03 and DX/2007. The second cluster consisted of all 18 Taiwanese 

isolates from this outbreak and 7 US isolates. 

Lin et al., 2014 

South Korea The complete genome of PEDV strain K14JB01 showed high nucleotide sequence homology (99.7 to 99.8%) with U.S. strains (e.g. 

USA/Colorado/2013) identified in 2013, and with Chinese strains (AH2012, BJ-2011-1, GD-B, and JS-HZ2012) identified in 2011 

and 2012 (99.1 to 99.4%). The ORF1a and ORF1b genes of K14JB01 show 99.8% homology (at the nucleotide level) with those of 

USA/Iowa/16465/2013. In addition, the S genes are 99.6% similar, the ORF3 genes are 100% identical, theMgenes are 99.9% 

similar, and theNgenes are 99.9% similar. 

Cho et al., 2014 

South Korea Three PEDV strains were isolates from dead piglets from two pig farms in Korea during the outbreak late 2013. Comparative 

genome analysis of the reemerging Korean PEDV isolates and other strains revealed that the complete genome sequences of the 

recent Korean strains were almost identical (99.9%) to those of the US PEDV strains isolated in 2013. According to the 

phylogenetic analysis, the reemerging Korean PEDV isolates were closely clustered with the US strains isolated in 2013 and 

Chinese strains isolated in 2012. 

Choi et al., 2014 

South Korea The full-length spike glycoprotein sequences were determined of ten PEDV strains isolated during the outbreak late 2013. The 

authors determined that the full-length spike genes of the PEDV strains were 9 nt longer than that of the prototype PEDV strain, 

CV777; this difference was caused by the presence of genetic signatures for recent PEDV field isolates as described elsewhere (Lee 

et al., 2010 VR). Nucleotide sequence analysis showed high homology (98.8%–99.9%) among the 10 tested isolates. In contrast, 

the isolates all shared only 94.3%–94.7% nt sequence identity with a previously sequenced field isolate from South Korea, KNU-

0801. However, the sequences of the 10 isolates were compared with those of other published PEDV strains and found to 

consistently share 99.2%–99.9% nt identity with recently emergent US strains. The complete genomic sequence of KNU-1305 was 

determined to be 28,038 nt in length, excluding the 3′ ploy(A) tail. The complete PEDV genome of KNU-1305 shared 96.3%–

99.9% nt identity with other complete PEDV genomes available in GenBank; the highest nucleotide 

identity (99.9%) was with US strains CO/13, IA1, IN17846, and MN. The full-length spike gene–based phylogenetic analysis 

revealed that the PEDV strains were clearly defined into 2 separate clusters, designated genogroup 1 (G1) and genogroup 2 (G2); 

each of the groups can be further divided into subgroups 1a, 1b, 2a, and 2b (Figure 1, panel A). All 10 PEDV strains from South 

Korea were classified into subgroup 2b and most closely clustered together with the recent US strains in an adjacent clade with the 

same subgroup. 

Lee and Lee, 2014 

Thailand Based on the analysis of the partial S genes, the Thai PEDV isolates were clustered into two groups related to Korean and Chinese 

field isolates. The results for the complete S genes, however, demonstrated that both groups were grouped in the same cluster. 

Temeeyasen et al., 

2014 

Vietnam Full-length genome sequences are reported for three PEDV isolates from pigs displaying severe diarrhea from farms located in 

northern and southern provinces of Vietnam. A comparison to PEDV sequences available in GenBank demonstrated that the three 

new PEDV isolates share high similarity (98.6% to 98.7% and 97.7% to 98.0% at nucleotide and amino acid levels, respectively) 

with more recent isolates from China responsible for 2010–2012 outbreaks. They all have unique characteristics including deletion 

and insertion in spike genes, which make them genetically distinct from CV777 and other earlier Chinese isolates. 

Vui et al., 2014 
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Sequence info Reference 

China PEDV CHYJ130330 was isolated from southern China and shown to be highly virulent when inoculated into neonatal pigs. This 

isolate has a high nucleotide identity of 99.1% with the U.S. strain IA1. 

Jia et al., 2014 

China S protein identity among the 3 new isolates was 99.4%–99.6% and shared 93.6%–93.7% identity with classical CV777 strain Wang et al., 2013b  

China Sequence analysis showed that ten post-2010 isolates shared high homology with each other and were always clustered together 

with the virulent DR13 strains (South Korea) and/or one earlier Chinese strain, CH-S, in phylogenetic analysis. All post-2010 

isolates possessed common sequence changes in each gene. These results suggest that current Chinese PEDV isolates originated 

from either South Korea and/or Chinese ancestors that underwent some genetic variation, thereby forming a new PEDV genotype 

in China. 

Wang et al., 2013c 

China 

(Shanghai) 

Phylogenetic analysis based on a complete ORF3 gene fragment of Shanghai PEDV field isolates, together with other PEDV 

reference strains, confirmed that all PEDVs fell into three groups. One group comprised the CV777, Br1/87, and LZC strains and 

the SH4 isolate. The second group consisted of vaccine strains (the attenuated strains DR13 and CV777 vs), the CH/GSJIII/07 

strain, and the SH5 isolate. The third group was made up of eight Shanghai field isolates (SH1, SH2, SH3 and PF1-5), Chinju99, 

and the parent strain DR13. From the M gene phylogenetic tree, we found that all isolated strains in Shanghai and most of the 

strains in China since 2006 were in the same clade with those isolated in Thailand and South Korea but differed genetically from 

the European strain (Br1/87), LZC from China isolated in 2006, and strain CV777, which is used as a vaccine in China. PEDV 

exhibits rapid variation and genetic evolution, and the currently prevailing PEDV strains in Shanghai represent a new genotype. 

The ORF3 of SH5 clusters with CV777 vs, and SH4 clusters with the wild-type CV777. Compared with attenuated DR13 and 

CV777 vaccine strains, ORF3 of SH5 contains no nucleotide deletions. 

Ge et al., 2013  

China (Beijing, 

Hebei and 

Zhejiang) 

 

 

15 complete M genes were analyzed and revealed 99.1-100% amino acid similarity with each other. Phylogenetic analysis 

including M gene sequences available in the GenBank indicated that the M genes obtained in this study were relatively conserved 

and exhibited minor variations although the M gene of PEDV was in general genetically diverse. The analysed S genes had an 

amino acid deletion between positions 155 and 156 compared with CV777, previous Chinese strains (LZC, CH/S, JS-2004-2, LJB-

03 and DX), Korean strain (Chinju99) and Japanese strains (MK, 83P-5). This deletion was identical in Korean KNU-serial strains 

(KNU-0802) reported in recent years and similar to Korean strain Spk1. 

Gao et al., 2013  

Korea  

(4 provinces) 

Phylogenetic analysis based on the complete E gene fragments of the Korean PEDV field isolates, PEDV vaccine strains, and 

PEDV reference strains confirmed that all PEDVs, including the Korean field isolates, fell into three groups. One group comprised 

the virulent DR13 strain, eight Korean field isolates, and five Chinese strains. The second group consisted of the live vaccine 

strains, attenuated DR13, KPED-9 and P-5V. The third group included the CV777, Chinju99, virulent SM98-1 strain of the Korean 

inactivated PED vaccine, and four Chinese strains. 

Park et al., 2013 

China  

(5 provinces) 

The N genes of 15 PEDV strains were amplified by RT-PCR. The nucleotide sequences were 96.1-100% identical to each other and 

the deduced amino acid sequences were 94.8-100% identical. Phylogenetic analysis showed that the Chinese PEDV strains are 

composed of a separate cluster including three early domestic strains (JS 2004-02, LJB/03 and DX) but differ genetically from the 

vaccine strain CV777 and the early Korean strains (Chinju99 and SM98). 

Li et al., 2013b 

China  

(15 provinces) 

The deduced amino acid sequences of 32 field strains showed 95-100% sequence identity to each other for the N gene and 96.2-

100% sequence identity to CV777. The number of predicted phosphorylation sites of N proteins varied from 5 to 12. 

Chen et al., 2013  
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China (southern 

China) 

The isolated porcine epidemic diarrhea virus (PEDV) CH/GDGZ/2012 strain was obtained from the faeces of diseased pigs in 2012 

in southern China. The complete genome sequence of CH/GDGZ/2012 exhibits 96.6%, 97.4%, 97.9%, and 97.0% nucleotide 
homologies with the genomes of PEDV strains CV777, DR13, CH/FJND-3/2011, and CH/S, respectively. Among the genes, 
the S gene of CH/GDGZ/2012 has 93.6% to 97.1% nucleotide sequence identity with those of the strains reported 
previously. 

Tian et al., 2013b 

Chine (Gansu 

Province) 

The S genes’ nucleotide sequences of 5 strains isolated in China (Gansu province) have 98.0-98.1% identity with the Chinese strain 

CH8 (isolated in 2011), 92.6-95.7% identity with previously isolated Chinese strains (DX, LZC, LJB-03, JS-2004-2 and CHS), 

93.6-93.7% identity with the European strains CV777 and Brl-87. All 5 strains have 8 mutations in the COE epitope, 1 mutation in 

the SS6 epitope and no mutations in epitopes SS2 and 2C10 compared to the vaccine strain CV777. 

Tian et al., 2013a 

China (Honan, 

Shanxi, Anhui 

and Hebei 

provinces in 

central China) 

Based on the phylogenetic analyses of M and ORF3 genes, PEDVs from central China and reference strains could be separated into 

three groups: G1, G2, and G3. The 15 PEDV strains (collected from different areas in central China during the 2010-2011 

outbreak) belonged to G3 group and showed a close relationship with Korean strains (2007), Thai strains (2007–2008), and partial 

other Chinese strains (2010–2011), but differed genetically from strains isolated in China from 2003 to 2006, European strains 

(Br1/87) and the vaccine strain (CV777) being used in China. 

Yang et al., 2013b  

China Phylogenetic analysis based on the N protein sequences of Asian PEDV strains indicated that there are two major groups of 

Chinese PEDV strains, a Japanese PEDV group and a Korean PEDV group. 

Yang et al., 2013a  

US The complete PEDV genome of CO/13 has a nucleotide identity of 96.5 to 99.5% with other complete PEDV genomes available in 

GenBank, with the highest nucleotide identity (99.5%) with Chinese strain AH2012. 

Marthaler et al., 2013  

US Phylogenetically, the PEDV isolate USA/Iowa/18984/2013 is 99.8 to 99.9% similar to other U.S. PEDVs reported earlier, 97.2 to 

99.6% similar to recent Chinese PEDVs, with AH2012 being the closest, and 96.9% similar to the prototype PEDV strain CV777. 

Hoang et al., 2013 

China Phylogenetic analyses based on the whole genome of strain CHGD-01 revealed that it shared nucleotide sequence identities of 

98.2–98.4% with two other Chinese isolates reported in the same year. Amino acid sequence analysis based on individual virus 

genes indicated a close relationship between the spike protein gene of CHGD-01 and the field strain KNU0802 in Korea. Its ORF3 

and nucleoprotein genes, however, were divergent from all other sequenced PEDV isolate clusters and therefore formed a new 

group, suggesting a new variant PEDV isolate in China. 

Pan et al., 2012 

China Seven PEDV strains isolated in Hebei province of China in 2010 showed 99.4–99.9 % nucleotide sequence identity of the M gene 

and 98.2–99.1 % deduced amino acid identity. When compared with other Chinese isolates and foreign isolates, the seven isolates 

showed high nucleotide identity with the Thailand isolate M-NIAH1005 (99.6–99.9 %) and Korea isolate PFF188 (99.7–100 %), 

but low identity with other Chinese isolates (96.6–99.1 %) and with the vaccine strain CV777 used in China (97.8–98.2 %). 

Fan et al., 2012 

China A phylogenetic tree based on the entire genome sequence of representative PEDVs showed that Chinese PEDVs could be divided 

into three subgroups. AJ1102, together with three field strains isolated in 2011 (WUH1-2011, BJ-2011-1, CH/FJND-3/ 2011), 

forms a separate branch, supporting the concept that AJ1102 is the epidemic PEDV in China. Compared to CH/S (a Chinese 

virulent PEDV strain isolated in 1986 in China) and the classical strain CV777 (3, 6), the AJ1102 S gene has a 6-nt insertion. 

Interestingly, similar insertions could be observed in the S gene of three field strains (GenBank accession numbers JN980698, 

JQ239429, and JQ638915) which were recently isolated in China. 

Bi et al., 2012  
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Thailand and 

Vietnam 

Phylogenetic analysis of the partial S gene of recent Thai and Vietnamese PEDV isolates indicated that they originated from the 

same Chinese PEDV ancestor and these isolates were gradually undergoing genetic variation and forming a new PEDV subcluster 

in each country. 

Ayudhya et al., 2012  

China The partial S gene deduced amino acid sequences of 9 Chinese PEDV isolates were compared and showed a high degree of 

homology (98.0%–100.0%); they had 98.0%–98.7% identity with Thailand strains, and 93.3%–94.7% with vaccine strain CV777 

(9 amino acids are changed in Chinese isolates compared to CV777). 

Sun et al., 2012   

China 

(Guangdong) 

The complete genome sequence of GD-1 shared 98.3%, 98.1%, 97.6%, and 96.8% nucleotide sequence identity with those of GD-

B, CH/FJND-3/2011, DR13, and CV777, respectively. Phylogenetic analysis of the complete genome revealed that Chinese PEDVs 

could be divided into three subgroups, among which GD-1 and other recent isolates, such as GD-A and AJ1102, belong to the same 

subgroup, which was distant from the CV777 vaccine strain and other foreign PEDV strains. 

Wei et al., 2012  

China The complete genome sequence of CH/FJND-3/2011 has 97.34% nucleotide sequence identity with that of CH/S. Among the six 

genes of CH/ FJND-3/2011, the S ene has the lowest sequence identity (93.75%) with that of CH/S and is 9 nt longer than those of 

CV777 and CH/S. The alignment in the S1 region (nt 1 to 2217) f the S gene reveals two domains exhibiting increased divergence 

compared to the remaining part of the sequence. The first domain is composed of the 1,100 N-terminal nucleotides. In this domain, 

the CH/FJND-3/2011 S gene has three insertion regions (nt 162, nt 170 to 180, and nt 413 to 415) and one deletion region (nt 70 to 

475). Furthermore, the largest number of nucleotide differences is clustered in the N-terminal region of the S1 gene. The second 

domain is located at positions 1428 to 1914. These regions are also found in the S genes of Korean PEDV isolates. 

Chen et al., 2012a  

China 

(Guangdong) 

The virulent PEDV isolate LC was isolated from suckling piglets with severe diarrhoea on an immunized-swine breeding farm. The 

complete genome sequence of LC shares 96.9 to 98.9% nucleotide sequence identities with those of other PEDV isolates deposited 

in GenBank. Phylogenetic analysis based on the complete genome shows that LC together with BJ_2011-1, CH/FNJD-3/2011 and 

GD-B forms a new cluster and is distant from vaccine strain CV777. 

Chen et al., 2012b 

China  The full-length PEDV S gene sequence was determined from 9 diarrhea samples from pigs at 9 farms with high mortality rates. The 

full-length S gene sequences of the 9 isolates from this study showed overall high conservation with the reference strains, up to 

94.9%–99.6% homology. By phylogenetic analysis, 4 of the field isolates (CH2, CH5, CH6, CH7) clustered with the previously 

described strain JS-2004–2 from China. Three field isolates (CH1, CH8, CHGD-01) formed a unique cluster with the sequence-

confirmed variant strain CH-FJND-3, which had been isolated from China in 2011 (Chen et al., 2012 JV). 

Li et al., 2012a 

China 

(Guangdong) 

The complete genome of the PEDV isolate GD-A has 96.5% to 98.4% nucleotide sequence identities with those of the reference 

strains reported in GenBank. Phylogenetic analysis of the complete genome shows that GD-A and other recent isolates (CH/FJND-

3/2011 and BJ-2011-1) belong to the same group distant from the CV777 vaccine strain and other foreign strains. Furthermore, 

CH/FJND-3/2011 and BJ_2011_1 can be clustered into one subgroup and differ genetically from GD-A. 

Fan et al., 2012b 
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Vietnam (three 

provinces in 

southern 

Vietnam) 

Genetic characterisation of 8 southern Vietnamese isolates revealed 15 amino acid changes in part of the S gene (region AA 500-

700 analysed) compared with CV777. Analysis of the full M gene sequence from 6 isolates identified 2 amino acid substitutions 

compared with CV777. The phylogenetic relationship of both partial S and M protein genes indicated that the current Vietnamese 

PEDVs were in the same cluster with the Chinese isolates (JS-2004-2 and DX), the Thai isolates (07NP01, 08NP02 and 08CB01) 

and the recent Korean isolates (KNU-0802 and CPF299). The results suggested that the current Vietnamese PEDV isolates might 

have originated from the same Chinese ancestor undergoing genetic variation and possibly forming a new PEDV genotype in 

Vietnam. 

Duy et al., 2011 

 Serial passage of the PEDV 83P-5 strain in Vero cells resulted in growth adaptation of the virus in cultured cells. Sequence 

analyses revealed a strong selection for the S gene and virtually all mutations occurring at the 34th and 61st passages had been 

carried over to the 100th-passaged virus. In contrast, the viral M and N genes showed a strong conservation during the serial 

passage. 

Sato et al., 2011  

Korea 

(6 provinces) 

The complete ORF3 gene sequence and phylogenetic analysis showed that all Korean PEDV field isolates (except DBI865) have a 

close relationship to Chinese field strains and differ genetically from European PEDV strains. The Korean PEDV field isolates 

(except DBI865) are also genetically different from the vaccine strains (attenuated DR13, KPED-9 and P-5V), which have been 

used for prevention of PEDV infection in Korea. Most of the Korean PEDV field isolates analyzed in this study differ from 

members of the group that includes the vaccine strains, and only a few isolates belonged to that group. 

Park et al., 2011 

 H1381 in the cytoplasmic tail of the S protein is a component of the KxHxx motif which is a retrieval signal of the S protein for the 

endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Loss of this motif could allow for the efficient transfer of S 

proteins from ERGIC onto the cell surface and subsequent increased fusion activity. 

Shirato et al., 2011  

China The complete genome sequence of strain CH/S was reported. 

 

Chen et al., 2011 

China: Gansu, 

Heilongjiang, 

Henan, Hunan, 

Inner 

Mongolia, 

Jiangsu, Jilin 

and Shanghai 

Chinese PEDV field strains (excluding CH/GSJIII/07) differ genetically from European field strains (CV777 and Br1/87) and have 

a close phylogenetic relationship to Korean field strains (DR13 and Chinju99). The Chinese PEDV field strains (excluding 

CH/GSJIII/07) are genetically different from the CV777 vaccine strain, which is used to prevent PEDV infection in China at 

present. There is a new genotype of PEDV prevailing in China that differs from the genotype of the vaccine strains. 

Chen et al., 2010  

Korea 

(Gyeongbuk) 

 

The sequence analysis data indicate the diversity of the PEDV isolates currently prevalent in Korea that represents a heterogeneous 

group. Phylogenetic analyses showed two separate clusters, in which all Korean field isolates were grouped together in the second 

cluster (group 2). The results indicate that prevailing isolates in Korea are phylogenetically more closely related to each other rather 

than other reference strains. data implicates a potential usefulness of the partial S protein gene including the N-terminal region in 

unveiling genetic relatedness of PEDV isolates. 

Lee et al., 2010  
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China The 3’ UTR existing on the extreme 3’ end of the genome is 334 nt in length and possesses an octameric sequence, GGA AGAGC, 

beginning at base 73 upstream from the poly(A) tail. The genome of CH/S contains six genes, the replicase (Rep), the spike (S), 

ORF3, envelope (E), membrane (M), and nucleoprotein (N)  genes, arranged in the order 5 -Rep-SORF3- E-M-N-3 . Two long 

ORFs (ORF1a and ORF1b) are of 12,351 nt (nt 293 to 12643) and 8,037 nt (nt 12598 to 20634) in length and overlap by 46 nt. At 

the overlapping region, there is a specific seven-nucleotide “slippery” sequence (UUUAAAC) and a pseudoknot structure 

ribosomal frameshifting signal), which are required for the translation of ORF1b. Sequences at the 5’ end of each gene represent 

signals for the transcription of subgenomic mRNAs of coronavirus. These sequences, known as transcription-regulating sequences 

(TRSs), include a stretch of a highly conserved sequence designated the core sequence (CS), located at sites immediately upstream 

of most of the genes. The CSs in the genome of CH/S are the hexameric motifs 5 -XUA(A/G)AC- 3 . The sequence CUAAAC 

found at the starting sites of gene 1 and the N gene, the GUAAAC sequence found at the starting site of the S gene, the CUAGAC 

sequence found at the starting sites of gene 3 and the E gene, and the AUAAAC sequence found at the starting site of the M gene 

are identical to those found in the same sites in the CV777 strain. 

Chen et al. 2010 

Thailand (8 

provinces) 

The M gene sequence analysis of 31 PEDV isolates obtained in Thailand indicated that the nucleotide sequence of the entire M 

gene was highly conserved.  All recent PEDV isolates in Thailand had 99.3%–100% nucleotide homology. The lowest sequence 

identity 96.5%, was with the Chinese strain, EF185992/LZC, and the highest sequence identity (99.2%–99.7%) was with the 

Chinese strain, JS-2004-2, and concurrent isolates from the National Institute of Animal Health, Thailand,  NIAH 07-08. findings 

demonstrated that the recent PEDV isolates in Thailand were genetically diverse in their S genes either within their group or with 

the reference strains. These point mutations may lead to genetic diversity among these isolates. Recent Thai PEDV isolates 

clustered in the same group were highly homologous with the Chinese strains, JS-2004-2 and LJB/03. The phylogenetic 

relationship of the Thai PEDV strain indicated that the recent Thai PEDV isolates differed genetically from previous Thai isolates. 

Our data suggested that all recent Thai PEDV isolates are genetically similar to the Chinese isolates identified in 2004. 

Puranaveja et al., 

2009 

China (five 

provinces) 

Sequence homology of M protein genes indicated that six Chinese PEDV isolates were highly homologous to CV777, Br1/87, 

Chinju99, JMe2, and JS-2004-2 rather than to QH, LZC, LJB/03, KPEDV-9, and KPEDV-9F. Although CH/SHH/06, 

CH/HNCH/06, CH/IMB/06 were isolated in different provinces, they had identical nucleotide sequences. It showed that the three 

isolates maybe originated from the same ancestor. By phylogenetic analysis, the six Chinese PEDV isolates with S-2004-2 formed 

a separate group, which excluded European strains, Korean strains, Japanese strain and three Chinese strains (QH, LZC, LJB/03). 

The phylogenetic relationship indicated that Chinese PEDV isolates were different from foreign PEDV strains and a new genotype 

PEDV was prevailing in China. 

Chen et al., 2008 

Korea The nucleotide and deduced amino acid sequence identities among field isolates were 96–99% and 94–98%, respectively, 

suggesting that these field isolates are more closely related to each other than the cell-adapted CV777 or the vaccine virus. 

Lee et al., 2008 

Korea The coding region of the S gene of attenuated PEDV DR13 had 20 nucleotide changes that appeared to be significant determinants 

of function in that they produced changes in its predicted amino acid sequence. Notably, attenuated PEDV DR13 has previously 

been found to exhibit reduced pathogenicity in pigs. The regions containing these 20 nucleotide changes may therefore be crucial 

for PEDV pathogenicity. Phylogenetic analysis suggested that attenuated PEDV DR13 is closely related to CV777, Br1/87, JS-

2004-2 and parent DR13, rather than to Spk1 and Chinju99 and is especially close to the Chinese PEDV strain JS-2004-2. 

Park et al., 2007 
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China The polymerase gene, a non-structural gene from strain TS of transmissible gastroenteritis virus (TGEV), was amplified by RT-

PCR primers designed based on the Purdue nucleotide sequence in GenBank. The expected 20054 bp product was obtained. The 

nucleotide sequence of ORF1 of TS shared nucleotide and amino acid identities of 98.8% and 99.0%, respectively with that of 

strain Pur46-MAD. The identity at the amino acid level for the ORF1 between TS and FIPV, PEDV, HCV299E,SARS was 87% 

57% 57% 45%, respectively. RdRp was regarded to have an important role in replication and the results indicated that it was a 

conserved protein. The data also showed that there was a ribosomal slippage site UUUAAAC and three stem-loop structures in the 

ORF1a and ORF1b overlapping regions. 

Li et al., 2006  

China 

(Heilongjiang) 

Sequence comparison with other PEDV strains selected from GenBank revealed that the N gene of the PEDV strain LJB/03, 

isolated in China (Heilongjinag), has a high sequence homology to those of other PEDV isolates, 97.4% with JS2004, 95.6% with 

chinju99, 96.6% with Br1/87, and 96.8% with CV777. The encoded protein shared 96.4% amino acid identities compared with 

CV777, 96.1% with Brl/87, 98% with JS2004, 96.90% with chinju99, respectively. N protein sequences demonstrated that PEDV 

strains LJB/03 and JS2004 which comes from China and chinju99 comes from Korea are more closely related to each other than 

they are to those two isolates European CV777 and Brl/87.The deduced amino acid sequence of the N gene is 99.8% identical 

between the European strains CV777 and Brl/87.  

Ge et al., 2006  

China 

(Qinghai) 

The membrane (M) gene of porcine epidemic diarrhea virus (PEDV) QH strain previously isolated in Qinghai, China, was cloned 

and sequenced then the sequences of nucleotide and deduced amino acid from PEDV-QH M gene was compared with PEDV-

CV777, JMe2, Br1/ 87, JS-2004-2 and KPEDV-9 strains. The nucleotide sequence encoding M protein’s entire ORF of PEDV-QH 

was 681 bp in length and encoded a protein of 226 amino acids with predicted molecular weight of approximate 25 ku, it consisted 

of 154 adenines (22.61%), 160 guanines ( 23.49% ), 217 thymines (31.86%) and 150 cytosines (22.03%). 

The PEDV-QH M gene nucleotide sequence shared 98.5%, 98.4%, 98.4%, 98.2% and 97.9% of homologous rates with that of 

CV777, JMe2, Br1/ 87, JS-2004-2 and KPEDV-9, respectively. The PEDV-QH M protein revealed 99.1%, 99.1%, 98.7%, 98.2% 

and 97.8% amino acid identity with that of CV777, JMe2, Br1/ 87, JS-2004-2 and KPEDV-9, respectively. Analysis predicted that 

M protein transmembraned 3 times; the amino acid sequence contained one potential site for prokaryotic membrane lipoprotein 

lipid attachment, three sites for glycosylat ion and four for serine ( S-) or threonine (T-) linked phosphorylation by protein kinase C 

or casein kinase. Sequences of nucleotides and amino acids correspondingly genetic derivation analysis showed that the mutation of 

M gene was belong to synonymous mutation mainly. 

Lan et al., 2005  
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Appendix D.  Info on impact of PEDV and PDCoV 

Table 8: Reported info on clinical signs and pathological lesions for different age groups of PEDV since 2004 obtained by an extensive search of the scientific 

literature and relevant websites 

Country Age of the animals Description clinical signs and/or pathological lesions Morbidity Mortality Production losses Reference 

Taiwan Piglets under 2 

weeks of age 

Severe vomiting and watery yellowish diarrhea 80-100% 90-100% Different degrees 

of weight loss 

Lin et al., 2014 

Sows, gilt, finishing, 

growing and nursery 

pigs 

Only developed appetite loss, anorexia and soft faeces for 

3-7 days 

 0%  

China 4-day-old Duroc 

crossbred piglets 

The dead piglets showed hemorrhage and shedding in the 

gastric mucosa, swelling and congestion in the mesenteric 

lymph nodes, and hemorrhage in the intestinal wall 

100% 100% 

 

 Wang et al., 2013b 

United 

States 

Neonatal piglets The piglets had signs of emaciation and dehydration. The 

gross pathological lesions were confined to the small 

intestine and were characterized by thin translucent 

intestinal walls that contained moderate amounts of yellow 

watery faeces without macroscopic traces of blood. No 

other gross abnormalities were noticed. Histological 

evaluation revealed regions of small intestines with villus 

blunting and fusion and minimal lymphoplasmacytic 

infiltration of the villi of the lamina propria. The gross and 

histological lesions from the PEDV outbreaks in the 

United States are similar to those observed in China (Li et 

al., 2012 EID). 

   Huang et al., 2013  

United 

States 

piglets within 24 hr 

of birth 

Watery fetid diarrhea that contained flocculent undigested 

milk in 90% of piglets and many were observed vomiting. 

Piglets dehydrated rapidly, were covered with feces.  

 mortality 

was 95% 

within 2–3 

days 

 Stevenson et al., 2013  

sows with parity ≤ 1 Animals showed diarrhea and were anorectic. Some 

vomited. 

90%   

gilts  90%   

parity 2 and older 

sows 

15%   
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Country Age of the animals Description clinical signs and/or pathological lesions Morbidity Mortality Production losses Reference 

 Acutely affected suckling pigs had yellow faeces coating 

the skin and hair, the stomachs contained little milk curd, 

the small and large intestines were distended by watery 

contents that contained floccules of white-to-yellow 

undigested milk, and small intestinal walls were thin.  

Microscopic lesions were limited to the small intestines. 

The most acute lesions were of degenerate epithelial cells 

on the lateral surfaces and tips of villi. Villi were variably 

shortened with condensation of the lamina propria near the 

tips of villi. Lesions in other pigs, presumably slightly later 

in the viral infection, were observed throughout the entire 

length of the small intestine.  

   

China Suckling piglets watery diarrhea, severe dehydration  83.5-100%  Gao et al., 2013  

Vietnam Suckling piglets severe watery diarrhoea, dehydration Up to 

100% 

65-91%  Duy et al., 2011  

Italy farrowing unit watery diarrhoea without evidence of blood or mucus  up to 34.5% 

(average due 

to diarrhoea 

0.73% before 

outbreak and 

11.9% 

during 

outbreak) 

 Martelli et al., 2008 

nursery unit (28 to 

60 days) 

watery diarrhoea without evidence of blood or mucus 70% 2%  

weaned piglets (40 

to 75 days) 

watery diarrhoea without evidence of blood or mucus 90% 0% feed consumption 

decreased, 

according to the 

farmers, by up to 

50% 

finishing unit watery diarrhoea without evidence of blood or mucus 20-80% 0-4% 

Pregnant sows  80% 0% 

Lactating sows  90%   

Thailand Suckling piglets acute watery diarrhea  49.2% 

(3519/7153) 

reduction in 

reproductive 

performance  

Olanratmanee et al., 

2010  
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Country Age of the animals Description clinical signs and/or pathological lesions Morbidity Mortality Production losses Reference 

Korea Sows    sows exhibited 

signs of mastitis 

resulting in an 

inadequate transfer 

of lactogenic 

immunity against 

PEDV to newborn 

piglets. 

Park and Lee, 2009 

Korea  watery diarrhea and dehydration at the time of sample 

collection 

   Park et al., 2013 

China Piglets watery diarrhea and dehydration    Chen et al., 2013b  

China Suckling piglets  Diarrhea, mild hemorrhage, undigested curdled milk in the 

stomach, thin-walled intestines with severe mucosal 

atrophy and foamy fluid 

100% 80-100%  Sun et al., 2012   

sows and boars few animals showed clinical diarrhoea    

China piglets severe watery diarrhea, dehydration with milk curd 

vomitus, mild hemorrhage, undigested curdled milk in the 

stomach and thin-walled intestines with severe mucosal 

atrophy and foamy fluid 

 60-85% 

 

 Wang et al., 2013a 

China Suckling piglets severe diarrhea and dehydration  Up to 100%  Yang et al., 2013a 

China Pigs of all ages Watery diarrhea, dehydration with mild curd vomitus and 

thin-walled intestines with severe villus atrophy and 

congestion. Loss of appetite with different degrees of 

severity, which were determined to be age dependent. The 

disease progressed within a few days. 

   Li et al., 2012a 

Suckling piglets  100%   

Pigs >2 weeks of 

age 

Mild diarrhea and anorexia, which resolved within a few 

days 

   

United 

States 

10- to 35-day-old 

gnotobiotic pigs 

Acute, severe watery diarrhea and vomiting developed in 

all inoculated pigs 24-48 hours after inoculation. Thin and 

transparent intestinal walls (duodenum to colon) and 

accumulation of large amounts of yellowish fluid in the 

intestinal lumen. The stomach was filled with curdled 

milk, possibly due to reduced intestinal peristalsis. 

Histological lesions included acute diffuse, severe atrophic 

jejunitis and mild vacuolation of superficial epithelial cells 

and subepithelial edema in cecum and colon. 

   Jung et al., 2014 
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Country Age of the animals Description clinical signs and/or pathological lesions Morbidity Mortality Production losses Reference 

United 

States 

 sows were known to be infected but piglets showed 

minimal to no clinical signs and no piglets had died 

   Wang et al., 2014  

United 

States 

 diarrhea started on day 2-3 following inoculation and 

continued for 7-8 days 

   http://www.pork.org/f

ilelibrary/Yoon%201

3-226%2011-27-

13.pdf 

Czech 

Republic 

 diarrhoea appeared 24 48  hpi and the animal died 48 hpi    Rodak et al., 2005 

United 

States 

Suckling piglets   100% 

ranging from 

3.5 to 5 

weeks of 

production 

 Dufresne and 

Robbins, 2014 

 

 

 

 

 

 

 

 

Weaned piglets   Slight 

increase in 

mortality 

 

All age groups    Reduction of 

growth rate 
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Appendix E.  Info of PEDV and PDCoV in matrices 

Table 9: Reported info on occurrence of PEDV in species other than pigs since 2004 obtained by an 

extensive search of the scientific literature and relevant websites 

Host  Matrix Detection 

method 

Number 

positive/tested 

samples 

Reference 

Samples of geese 

and buzzards 

Mouth RT-PCR 1/2 http://www.cvm.umn.e

du/sdec/prod/groups/cv

m/@pub/@cvm/@sdec/

documents/content/cvm

_content_475778.pdf 

Lung RT-PCR 0/3 

Stomach RT-PCR 2/3 

Intestine RT-PCR 1/4 

Vent/cloaca RT-PCR 2/3 

Faeces RT-PCR 0/2 

Feet RT-PCR 1/6 

Area landed RT-PCR 0/1 

Starling Feet, cloaca and crop RT-PCR 0/14 http://www.pork.org/fil

elibrary/Thomas%2014

-171%20main%206-

16-14.pdf 

ileum Immuno-

histochemistry 

0/9 

Mice (inoculated 

with PEDV) 

Blood RT-PCR 0/10 Kamau et al., 2010 

Intestine RT-PCR 0/10 

Lung RT-PCR 0/10 

Spleen RT-PCR 0/10 

Kidney RT-PCR 0/10 

Faeces RT-PCR 0/10 

Serum ELISA 0/36 

Sparrows 

(inoculated with 

PEDV) 

Small intestine RT-PCR 0/16 Lee et al., 2014  

Mice (inoculated 

with PEDV) 

Small intestine RT-PCR 0/16 

Rodents Brain, tonsils, lungs, 

heart, spleen, liver, 

kidneys, mesenteric 

lymph nodes, small and 

large intestines 

RT-PCR 0/102 Truong et al., 2013  

Stray cats Brain, lungs, heart, 

spleen, liver, kidneys, 

mesenteric lymph nodes, 

small and large 

intestines 

RT-PCR 0/24 

Tonsils RT-PCR 1/24 

 

http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_475778.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_475778.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_475778.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_475778.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_475778.pdf
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Table 10: Reported info on PEDV detection in matrices since 2004 obtained by an extensive search of the scientific literature and relevant websites 

Matrix Detection 

method 

Description Reference 

Faeces RT-PCR Ten samples tested positive for PEDV alone, while all of the other samples also tested positive for other enteric 

pathogens 

Ge et al., 2013  

Intestine RT-PCR Positive Chen et al., 2013a 

Milk RT-PCR Positive 

Faeces  Virus shedding (up to 10
12.3

 log10 genomic equivalents per ml) from 24 h up to 72h after inoculation with PEDV 

strain PC21A 

Jung et al., 2014 

Intestine Immuno-

histochemistry 

Immunofluorescence-stained cells were observed mainly in the epithelium of atrophied villi of small (duodenum 

to ileum) and large intestines. Lung tissues of the infected pigs did not show immunofluorescence staining. 

Serum RT-PCR All infected pigs tested at acute or later stages of infection had viral RNA titers of 4.8–7.6 log10 GE/mL in serum 

samples. These titers were similar to those for field samples tested by real-time RT-PCR; 11 (55%) of 20 acute 

phase serum samples collected from 13- to 20-week-old pigs with diarrhea from Ohio had viral RNA titers of 

4.0–6.3 GE/mL. The early, severe diarrhea and vomiting and the PEDV fecal shedding at high titers may be 

accompanied by viremia. 

Transport 

vehicle 

RT-PCR Before unloading, 38 (6.6%) of the 575 trailers were contaminated with PEDV. The proportion of contaminated 

trailers ranged from 2% to 14.6% among the 6 harvest facilities; the facility level median was 5.0%. Of the 

remaining 537, 28 (5.2%) that were not contaminated at arrival were contaminated in the unloading process. Of 

the 38 trailers that were contaminated on arrival, environmental samples from 13 (34.2%) were negative for 

PEDV after unloading. Environmental samples from these 13 trailers tended to have higher cycle threshold values 

than those from the 25 trailers that were positive before and after unloading: 32.3 versus 30.6, respectively. 

Lowe et al., 2014 

Faeces RT-PCR faecal shedding of PEDV mainly from 2 till 21 days after oro-nasal inoculation with a pool of gut-derived 

intestinal contents that has been used as 'feedback' inocula for controlled exposure of a sow herd in a commercial 

swine production unit 

http://www.pork.org/filel

ibrary/Hesse%2013-

228%2012-20-13.pdf; 

Hesse et al., 2014  Nasal 

swab 

RT nasal shedding of PEDV from 2 till 14 days after oronasal inoculation 

Serum RT PEDV detection in serum in 3/5 contact animals and 9/22 inoculated animals (2-8 days following oronasal 

inoculation) 

Serum immuno-

fluorescence 

assay 

there is no evidence of seroconversion in the aerosol control group at day 35 or 43 in spite of clear demonstration 

of PEDV nucleic acid in nasal and oral fluid samples 

Faeces RT-PCR virus shedding between day 1 until day 25 after oral inoculation http://www.pork.org/filel

ibrary/Yoon%2013-

226%2011-27-13.pdf  
Oral fluid RT-PCR PEDV RNA was detected in oral fluids between day 1 and day 28 after oral inoculation 

Plasma Bioassay Plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV Gerber et al., 2014a 

http://www.pork.org/filelibrary/Hesse%2013-228%2012-20-13.pdf
http://www.pork.org/filelibrary/Hesse%2013-228%2012-20-13.pdf
http://www.pork.org/filelibrary/Hesse%2013-228%2012-20-13.pdf
http://www.pork.org/filelibrary/Yoon%2013-226%2011-27-13.pdf
http://www.pork.org/filelibrary/Yoon%2013-226%2011-27-13.pdf
http://www.pork.org/filelibrary/Yoon%2013-226%2011-27-13.pdf
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Matrix Detection 

method 

Description Reference 

Spray-

dried 

bovine 

plasma 

(SDBP) 

Vero cell 

culture 

Bovine plasma was inoculated with PEDV at an average final titer of 10
4.2

 TCID50/ml. Using a laboratory scale 

drier, inoculated plasma was spray dried at 200°C inlet temperature and either 70 or 80°C throughout substance. 

Liquid samples contained infective virus, but none of the spray dried samples were infectious.  

Commercial SDBP powder was inoculated with PEDV to an average final titer of 10
2.8

 TCID50/g. The virus was 

non-infectious for all samples (n=5 per time and temperature condition) stored at 22°C at 7, 14 and 21 days. 

PEDV was infective in 1 out of 5 samples stored at 12°C at 7 days, but none of the samples stored for 14 and 21 

days were infectious in Vero cell culture. For samples stored at 4°C, 4 out of 5 samples were infectious at 7 days, 

1 out of 5 samples was infectious at 14 days but none was infectious at 21 days. These results suggest that 

survival on SDBP was dependent upon storage temperature and time, the virus was not found infectious on cell 

culture within 7 days when stored at room temperature and within 21 days when stored at refrigerated 

temperature. 

Pujols and Segalés, 

submitted; 

https://www.aasv.org/pe

dv/research/NASDBPP_r

esearch.pdf 

SDPP Bioassay Bioassay studies performed by CFIA demonstrated that the implicated plasma did contain PEDV capable of 

infecting and causing disease in pigs; data not shown 

Pasick et al., 2014; 

http://www.inspection.gc

.ca/animals/terrestrial-

animals/diseases/other-

diseases/ped/2014-02-

18/eng/1392762739620/

1392762820068 

SDPP PCR and 

bioassay 

(experiment 

1); clinical 

signs, RT-PCR 

and 

immunohistoc

hemistry 

(experiment 2) 

17-19-day-old pigs were inoculated with PEDV PCR+ plasma samples and remained negative in PCR and 

serology testing (3 plasma samples; 5 pigs/sample) (experiment performed by FDA). In a second experiment 

(performed by University of Minnesota), four PEDV PCR+ plasma samples were tested in piglets. All animals (3 

per sample) remained negative for clinical signs (up to 72 h post inoculation), in RT-PCR (jejunum) and 

immunohistochemistry.  

https://www.aasv.org/pe

dv/research/NASDBPP_r

esearch.pdf  

SDPP in 

feed 

Bioassay A bioassay using 3-week-old piglets could not demonstrate that the feed pellets containing the PEDV PCR+ 

blood plasma were capable of causing disease 

Pasick et al., 2014; 

http://www.inspection.gc

.ca/animals/terrestrial-

animals/diseases/other-

diseases/ped/2014-03-

03/eng/1393891410882/

1393891411866 

https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-02-18/eng/1392762739620/1392762820068
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/other-diseases/ped/2014-03-03/eng/1393891410882/1393891411866
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Matrix Detection 

method 

Description Reference 

SDPP in 

feed 

RT-PCR and 

bioassay 

3-week old piglets received a non-pelleted diet with 5% SDPP containing 5.1±0.1 log10 PEDV RNA copies per 

gram. The diet contained 3.3±0.3 log10 PEDV RNA copies per gram. The interval from SDPP production to 

initiation of feeding the pigs in this trial was between 28 and 32 days, which are considered typical in the US by 

the authors since it accounts for the time from production, transport to the feed mill, distribution to the farm, and 

administration to the pigs. Feed samples were obtained on a weekly basis and contained 3.2±0.5 log10 PEDV 

RNA copies per gram without apparent reduction over time. The animals (n=3) remained PEDV RNA negative 

and did not seroconvert until at least 28 days (end of experiment), no PEDV was detected using 

immunohistochemistry, no villus atrophy was detected and none of the animals had colitis. 

Opriessing et al., 2014 

SDPP in 

feed 

PEDV-specific 

antibodies and 

immunohistoc

hemistry 

(experiment 

1); PEDV-

specific 

antibodies 

(experiment 2) 

Experiment 1 showed that feeding pigs a diet containing 5% commercial spray-dried porcine plasma that was 

PEDV PCR+ (26.2 Ct) did not demonstrate evidence of PEDV infectivity in these pigs through 21 days post-

weaning (n=24) (negative for PEDV-specific serum antibodies and immunohistochemistry). Experiment 2 

performed by Iowa State University indicated that feeding pigs a diet with PEDV PCR+ spray-dried porcine 

plasma (30.0 Ct) did not result in PEDV infectivity over the 28-day study period (negative in PEDV-specific 

antibodies).  

Campbell et al., 2014; 

https://www.aasv.org/pe

dv/research/NASDBPP_r

esearch.pdf 

SDPP in 

feed 

Clinical signs Millions of pigs in Brazil and Western Canada fed diets containing PEDV PCR+ SDPP imported from the US 

since summer 2013 have not developed PEDV (no cases reported) 

Crenshaw et al., 2014  

Feed Bioassay Piglets receiving PEDV PCR-positive feed bin samples from three clinically affected breeding herds, showed 

clinical signs of PEDV infection and viral shedding was detected. The exact source of PEDV contamination in 

the feed lots is undetermined. 

Dee et al., 2014 

Faeces RT-PCR and 

real-time PCR 

PEDV was shed in faecal excretions at high concentration (up to 1x10
6.85

 copies mL
-1

) and the shedding time 

lasted for 56 days under field conditions. 

Sun et al., 2014  

Air RT-PCR and 

real-time PCR 

Air samples were collected at three infected farms. All samples from farm A were PEDV negative, the overall 

PEDV positive rate of farms B and C was 6.7% and 12.2% respectively.  

Semen RT-PCR and 

real-time PCR 

Twenty boars without symptoms of PED were selected from PEDV-infected farms and 16 from them tested 

positive (10
1.46

 to 10
3.55

 copies/mL). The study did not confirm whether PEDV could be transmitted by semen. 

https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
https://www.aasv.org/pedv/research/NASDBPP_research.pdf
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Matrix Detection 

method 

Description Reference 

Air RT-PCR Experimental (intragastral) infection of 7 to 8 week-old pigs with an inoculums derived from mucosal scrapings 

of a PEDV case. Air samples were detected in the center of the isolation rooms and pigs did not have direct 

contact with the sampler. All air samples (taken between 8 and 63 hours post inoculation) were positive and the 

estimated number of RNA copies per m
3
 of air ranged between 1x10

6
 to 1x10

9
. 

Air samples were also collected around eight swine herds experiencing acute PEDV outbreaks in Oklahoma (US), 

at different locations downwind (distance to the farm ranging from 9.6 m to 24.14 km). Eleven out of 62 (18%) 

air samples tested RT-PCR positive. Genetic material of PEDV (7.98x10
3
 PEDV RNA copies/m

3
) was detected 

up to 10 miles downwind of farm C. At least one air sample from each farm (except farms E and H) tested 

positive. None of the air samples collected under field conditions was positive on bioassay. 

Alonso et al., 2014 

Air RT-PCR and 

bio-assay 

Three-week-old piglets were inoculated with a pool of gut derived intestinal contents that has been used as 

feedback inoculum in a commercial swine production unit. Group-C pigs were not inoculated, but were housed in 

a separate pen in the common animal rooms as Groups A (inoculated) and Group B (not inoculated but direct 

contact with Group A). There is no evidence of seroconversion in the aerosol control group C in spite of the clear 

demonstration of PEDV nucleic acid in nasal and oral fluid samples. 

Hesse et al., 2014 

Air RT-PCR and 

bio-assay 

Ten 8-week old pigs were experimentally infected with PEDV. Air samples were collected for 3 days from the 

isolation room this group of pigs was housed in. All samples put into bioassay were PEDV PCR positive. Clinical 

signs (diarrhoea), necropsy findings and/or significant replication (15-16 Ct in small intestine) indicated live virus 

in the air samples. 

http://www.cvm.umn.edu

/sdec/prod/groups/cvm/

@pub/@cvm/@sdec/doc

uments/content/cvm_con

tent_474046.pdf 

http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_474046.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_474046.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_474046.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_474046.pdf
http://www.cvm.umn.edu/sdec/prod/groups/cvm/@pub/@cvm/@sdec/documents/content/cvm_content_474046.pdf


PEDV and PDCoV 

 

EFSA Journal 2014;12(10):3877  66 

Table 11: Stability of PEDV in different matrices under different conditions 

(http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf) 

Matrix Temperature RH cT value in intestinal samples from inoculated piglets 

0 days 1days 3 days 7 days 14 days 28 days 

Fresh 

feces 

40°C 30% 16.48 NR 32.00 - - NR 

50% NR 16.35 - - - NR 

70% 13.79 NR 13.30 15.16 - NR 

50°C 30% 15.65 15.75 - - NR NR 

50% 16.63 NR 19.08 - - NR 

70% 16.12 NR 14.99 35.33  - NR 

60°C 30% NR 13.26 35.10 37.24 NR NR 

50% 17.94 16.31 - - NR NR 

70% NR 33.93 35.61 - NR NR 

Slurry Room 

temperature 

(~25°C) 

30% 17.01 NR NR 15.81 36.86 - 

50% NR NR NR 17.60 17.56 - 

70% NR NR NR 15.75 35.86 - 

4°C 30% 16.26 NR NR 16.41 17.19 16.08 

50% NR NR NR 17.03 16.04 17.90 

70% NR NR NR 16.19 17.08 36.69 

-20°C NR 16.77 NR 15.79 16.27 15.51 14.81 

Wet feed Room 

temperature 

(~25°C) 

NR 15.52 NR NR 15.21 27.63 29.67 

Dry feed Room 

temperature 

(~25°C) 

NR NR NR NR 16.52 - - 

NR, not reported 

Table 12: Stability of PEDV in faeces under different conditions (Thomas et al., 2014; 

http://www.pork.org/filelibrary/Holtkamp%2013-227%2012-20-13.pdf) 

Group Treatment simulates Number of PEDV 

positives/tested in pig 

bioassay 

No treatment, pigs received a gavage of 

PEDV-negative faeces 

No exposure to PEDV 0/4 

No treatment, pigs received a gavage of 

PEDV-positive faeces  

Exposure to a PEDV-contaminated 

hog trailer with no decontamination 

attempted 

4/4 

PEDV-positive faeces were placed on an 

aluminium tray and heated to 160 °F 

(71.1 °C) in an incubator and held at this 

temperature for 10 minutes. 

Exposure to a PEDV-contaminated 

hog trailer that was heated via 

thermo-assisted drying and 

decontamination (TADD) to a 

temperature of 160F (71.1°C) and 

held at this temperature for 10 min. 

This is consistent with TADD 

protocols in some systems. 

0/4 

PEDV-positive faeces were placed on an 

aluminium tray and heated to 145 °F 

(62.7 °C) in an incubator and held at this 

temperature for 10 minutes  

Exposure to a PEDV-contaminated 

hog trailer that was heated via 

TADD to a temperature of 145F 

(62.7°C) and held at this 

temperature for 10 minutes. This is 

consistent with TADD protocols in 

some systems. 

1/4 

http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf
http://www.pork.org/filelibrary/Holtkamp%2013-227%2012-20-13.pdf
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Group Treatment simulates Number of PEDV 

positives/tested in pig 

bioassay 

PEDV-positive faeces were placed on an 

aluminium tray and heated to 130 °F 

(54.4 °C) in an incubator and held at this 

temperature for 10 minutes  

Exposure to a PEDV-contaminated 

hog trailer that was heated via 

TADD to a temperature of 130F 

(54.4°C) and held at this 

temperature for 10 min. This was 

done to demonstrate a TADD 

protocol that is not reaching a 

temperature that is probably not 

sufficient to inactivate PEDV. 

1/4 

PEDV-positive faeces were placed on an 

aluminium tray and heated to 100F (37.7 °C) 

in an incubator and held at this temperature 

for 12 hours  

Exposure to a PEDV-contaminated 

hog trailer that was not 

decontaminated via acceptable 

TADD procedures. This would 

stimulate leaving a trailer in a 

heated garage of bay overnight to 

encourage drying. 

2/4 

PEDV-positive faeces were placed on an 

aluminium tray and left at room temperature 

for 24 hours  

Exposure to a PEDV-contaminated 

hog trailer that was not heated, but 

left to sit for 24 hours between 

loads of hogs. 

1/4 

PEDV-positive faeces were placed on an 

aluminium tray and left at room temperature 

for 24 hours 

Exposure to a PEDV-contaminated 

hog trailer that was not heated, but 

was left to sit unused for 1 week 

between loads. 

0/4 

  

Table 13: Determination of the minimal infective dose of PEDV 

(http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf) 

PEDV dilution Experiment 1 Experiment 2 

Extent of diarrhea cT value in 

mucosal samples 

from inoculated 

piglets 

Extent of diarrhea cT value in 

mucosal samples 

from inoculated 

piglets 

10
-2 

++ 17.24   

10
-3 

++ 16.92   

10
-4 

++ 15.32   

10
-5 

+ 17.10   

10
-6 

+ 16.02 + 15.52 

10
-7 

- 15.70 ++ 15.52 

10
-8 

  + 16.03 

10
-9 

  - 30.29 

10
-10 

  - - 

10
-11

   - - 

10
-12

   - - 

 

 

http://www.pork.org/filelibrary/Goyal%2013-215%201-21-14.pdf
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GLOSSARY AND ABBREVIATIONS 

GLOSSARY 

Case One infected animal 

Isolate Virus that has been isolated using cell culture 

Outbreak The occurrence of one or more cases in an epidemiological unit 

Strain A group of viruses and/or isolates having a high sequence identity and hence 

clustering together in phylogenetic trees 

 

ABBREVIATIONS 

aa Amino acids 

dpi Days post infection 

EFSA European Food Safety Agency 

EU European Union 

GE Genomic equivalent 

hpi Hours post inoculation 

nt nucleotides 

PED Porcine epidemic diarrhoea 

PEDV Porcine epidemic diarrhoea virus 

PEDV-Am PEDV isolated in Americas 

PEDV-Asia PEDV isolated in Asia 

PEDV-EU PEDV isolated in Europe 

PDCoV Porcine deltacoronavirus 

SDPP Spray-dried porcine plasma 

TGEV Transmissible gastroenteritis virus 

TOR Terms of reference 

  

 

http://web.oie.int/eng/normes/mcode/en_glossaire.htm#terme_cas
http://web.oie.int/eng/normes/mcode/en_glossaire.htm#terme_unite_epidemiologique
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